1
|
Li F, Gates DJ, Buckler ES, Hufford MB, Janzen GM, Rellán-Álvarez R, Rodríguez-Zapata F, Romero Navarro JA, Sawers RJH, Snodgrass SJ, Sonder K, Willcox MC, Hearne SJ, Ross-Ibarra J, Runcie DE. Environmental data provide marginal benefit for predicting climate adaptation. PLoS Genet 2025; 21:e1011714. [PMID: 40489511 DOI: 10.1371/journal.pgen.1011714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 05/07/2025] [Indexed: 06/11/2025] Open
Abstract
Climate change poses a major challenge for both natural and cultivated species. Genomic tools are increasingly used in both conservation and breeding to identify adaptive loci that can be used to guide management in future climates. Here, we study the utility of climate and genomic data for identifying promising alleles using common gardens of a large, geographically diverse sample of traditional maize varieties to evaluate multiple approaches. First, we used genotype data to predict environmental characteristics of germplasm collections to identify varieties that may be pre-adapted to target environments. Second, we used environmental GWAS (envGWAS) to identify loci associated with historical divergence along climatic gradients. Finally, we compared the value of environmental data and envGWAS-prioritized loci to genomic data for prioritizing traditional varieties. We find that maize yield traits are best predicted by genome-wide relatedness and population structure, and that incorporating envGWAS-identified variants or environment-of-origin provide little additional predictive information. While our results suggest that environmental data provide limited benefit in predicting fitness-related phenotypes, environmental GWAS is nonetheless a potentially powerful approach to identify individual novel loci associated with adaptation, especially when coupled with high density genotyping.
Collapse
Affiliation(s)
- Forrest Li
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Daniel J Gates
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
- Center for Population Biology, University of California Davis, Davis, California, United States of America
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
| | - Garrett M Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
| | - Rubén Rellán-Álvarez
- Department of Molecular and Structural Biochemistry and Plant Sciences Initiative, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Fausto Rodríguez-Zapata
- Department of Molecular and Structural Biochemistry and Plant Sciences Initiative, North Carolina State University, Raleigh, North Carolina, United States of America
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Cinvestav, Irapuato, México
| | | | - Ruairidh J H Sawers
- Department of Plant Science, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Samantha J Snodgrass
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
| | - Kai Sonder
- CIMMYT, El Batan, Texcoco, Estado de Mexico, Mexico
| | | | | | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
- Center for Population Biology, University of California Davis, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Daniel E Runcie
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| |
Collapse
|
2
|
Li X, Li Y, Sun Y, Li S, Cai Q, Li S, Sun M, Yu T, Meng X, Zhang J. Integrating Genetic Diversity and Agronomic Innovations for Climate-Resilient Maize Systems. PLANTS (BASEL, SWITZERLAND) 2025; 14:1552. [PMID: 40431116 PMCID: PMC12114636 DOI: 10.3390/plants14101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Maize is a vital staple crop significantly affected by climate change, necessitating urgent efforts to enhance its resilience. This review analyzes advanced methodologies for maize improvement, focusing on the identification of genetic determinants through QTL mapping, candidate gene mining, and GWAS. We highlight the transformative potential of CRISPR gene editing for identifying key regulators in maize development and the utility of virus-induced gene silencing (VIGS) for functional genomics. Additionally, we discuss breeding strategies leveraging the genetic diversity of maize wild relatives and innovations such as speed breeding and genomic selection (GS), which accelerate breeding cycles. Marker-assisted selection (MAS) plays a critical role in developing superior maize varieties. The review also encompasses agronomic practices and technological innovations, including GS, aimed at climate mitigation. High-throughput phenotyping and omics-based approaches, including transcriptomics and metabolomics, are essential tools for developing climate-resilient maize. Climate changes have a significant impact on maize production and pose unprecedented challenges to its cultivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jianguo Zhang
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.L.); (Y.L.); (Y.S.); (S.L.); (Q.C.); (S.L.); (M.S.); (T.Y.); (X.M.)
| |
Collapse
|
3
|
Gobezie A, Ademe D, Sharma LK. CERES-Maize (DSSAT) Model Applications for Maize Nutrient Management Across Agroecological Zones: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:661. [PMID: 40094524 PMCID: PMC11901759 DOI: 10.3390/plants14050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Effective nutrient management is essential for boosting maize yield and quality and tackling factors that limit or reduce productivity. The Crop Environment Resource Synthesis (CERES)-Maize model embedded in the Decision Support Systems for Agrotechnology Transfer (DSSAT) cropping system model (CSM), known for its accurate predictions, serves as a valuable tool for guiding agricultural decisions, particularly in nutrient management, offering an efficient alternative to traditional long term field trials. This systematic review consolidates the current knowledge on nutrient management practices for maize using the CERES-Maize (DSSAT) model, providing insights that benefit researchers, agronomists, policymakers, and farmers. By leveraging crop system, soil carbon and nitrogen, and daily water balance models with crop/land management options, the model accurately predicts the effect of agricultural practices on crop growth, yield, and environmental impacts. This enables the evaluation of diverse management strategies to improve productivity and sustainability.
Collapse
Affiliation(s)
- Addey Gobezie
- Department of Plant Science, College of Agriculture and Natural Recourse, Debre Maros University, Amhara P.O. Box. 269, Ethiopia
| | - Dereje Ademe
- Soil, Water and Ecosystem Sciences Department, Institute of Food and Agricultural Systems, University of Florida, Gainesville Campus, Gainesville, FL 32611, USA
| | - Lakesh K. Sharma
- Soil, Water and Ecosystem Sciences Department, Institute of Food and Agricultural Systems, University of Florida, Gainesville Campus, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Andorf CM, Ross-Ibarra J, Seetharam AS, Hufford MB, Woodhouse MR. A unified VCF dataset from nearly 1,500 diverse maize accessions and resources to explore the genomic landscape of maize. G3 (BETHESDA, MD.) 2025; 15:jkae281. [PMID: 39611775 PMCID: PMC11797055 DOI: 10.1093/g3journal/jkae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Efforts to capture and analyze maize nucleotide diversity have ranged widely in scope, but differences in reference genome version and software algorithms used in these efforts inhibit comparison, and these data are generally not available in an easy-to-use visualization platform for quick access and analysis. To address these issues, The Maize Genetics and Genomics Database has collaborated with maize researchers to offer variant data from a diverse set of 1,498 inbred lines, traditional varieties, and teosintes through a standardized variant-calling pipeline against version 5 of the B73 reference genome. The output was filtered for mapping quality, completeness, and linkage disequilibrium, and annotated based on variant effects relative to the B73 RefGen_v5 gene annotations. MaizeGDB has also updated a web tool, SNPversity 2.0, to filter, visualize, and download genotype sets based on genomic locations and accessions of interest, and added external datasets to demonstrate SNPversity 2.0's broad usage. MaizeGDB plans to host annual updates of these resources as additional resequencing data become available, with plans to expand to all publicly available sequence data.
Collapse
Affiliation(s)
- Carson M Andorf
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, Genome Center, and Center for Population Biology, University of California, Davis, Davis, CA 95616, USA
| | - Arun S Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
5
|
Gunundu R, Shimelis H, Tesfamariam SA. Genetic diversity and population structure analyses of tropical maize inbred lines using Single Nucleotide Polymorphism markers. PLoS One 2025; 20:e0315463. [PMID: 39854488 PMCID: PMC11760008 DOI: 10.1371/journal.pone.0315463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025] Open
Abstract
Analyses of the genetic distance and composition of inbred lines are a prerequisite for parental selection and to exploit heterosis in plant breeding programs. The study aimed to assess genetic diversity and population structure of a maize germplasm panel comprising 182 founder lines and 866 derived inbred lines using Single Nucleotide Polymorphism (SNP) markers to identify genetically unique lines for hybrid breeding. The founder lines were genotyped with 1201 SNPs, and the derived lines with 1484 SNPs. Moderate genetic variation, with genetic diversity ranging from 0.004 to 0.44 with a mean of 0.25, was recorded for the founder lines, while corresponding values of 0.004 to 0.34 with a mean of 0.13 were recorded for the derived lines. Heterozygosity values ranging from 0.00 to 0.24 and a mean of 0.08 were recorded for both lines. Of the SNP markers used, 82% of the 1201 markers and 84% of the 1484 markers exhibited polymorphism information content ranging from 0.25 to 0.50. Analysis of molecular variance revealed significant genetic differences (P ≤ 0.001) among and within populations in the founder and derived lines. Most detected variations, i.e., 97% and 88.38%, were attributed to within populations in the founder and derived lines, respectively. Population structure analysis identified three distinct subpopulations among founder lines and two among derived lines. Cluster analysis supported the population structure The following genetically distant founder and derived inbred lines were selected: G15NL337 and G15NL312 (Cluster 1), 15ARG152 and RGS-PL44 (Cluster 2), RGS-PL44 and 15ARG149 (Cluster 2), and RGS-PL33 and RGS-PL44 (Cluster 2), respectively. The selected lines are genetically distinct and recommended for marker-assisted hybrid maize breeding to exploit the frequency of beneficial alleles. This study provides valuable insights for maize breeding programs, enabling the exploitation of beneficial alleles and contributing to improved crop yields and food security through hybrid breeding.
Collapse
Affiliation(s)
- Rodreck Gunundu
- African Centre for Crop Improvement (ACCI), College of Agriculture, Engineering and Science (CAES), University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
- Seed Co, Rattray Arnold Research Station, Harare, Zimbabwe
| | | | | |
Collapse
|
6
|
Woodhouse MR, Cannon EK, Portwood JL, Gardiner JM, Hayford RK, Haley O, Andorf CM. Tools and Resources at the Maize Genetics and Genomics Database (MaizeGDB). Cold Spring Harb Protoc 2025; 2025:pdb.over108430. [PMID: 39151939 DOI: 10.1101/pdb.over108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The Maize Genetics and Genomics Database (MaizeGDB) is the community resource for maize researchers, offering a suite of tools, informatics resources, and curated data sets to support maize genetics, genomics, and breeding research. Here, we provide an overview of the key resources available at MaizeGDB, including maize genomes, comparative genomics, and pan-genomics tools. This review aims to familiarize users with the range of options available for maize research and highlights the importance of MaizeGDB as a central hub for the maize research community. By providing a detailed snapshot of the database's capabilities, we hope to enable researchers to make use of MaizeGDB's resources, ultimately assisting them to better study the evolution and diversity of maize.
Collapse
Affiliation(s)
- Margaret R Woodhouse
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - Ethalinda K Cannon
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - John L Portwood
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - Jack M Gardiner
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Rita K Hayford
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - Olivia Haley
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - Carson M Andorf
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
- Department of Computer Science, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
7
|
Resende RT, Xavier A, Silva PIT, Resende MPM, Jarquin D, Marcatti GE. GIS-based G × E modeling of maize hybrids through enviromic markers engineering. THE NEW PHYTOLOGIST 2025; 245:102-116. [PMID: 39014516 PMCID: PMC11617650 DOI: 10.1111/nph.19951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/22/2024] [Indexed: 07/18/2024]
Abstract
Through enviromics, precision breeding leverages innovative geotechnologies to customize crop varieties to specific environments, potentially improving both crop yield and genetic selection gains. In Brazil's four southernmost states, data from 183 distinct geographic field trials (also accounting for 2017-2021) covered information on 164 genotypes: 79 phenotyped maize hybrid genotypes for grain yield and their 85 nonphenotyped parents. Additionally, 1342 envirotypic covariates from weather, soil, sensor-based, and satellite sources were collected to engineer 10 K synthetic enviromic markers via machine learning. Soil, radiation light, and surface temperature variations remarkably affect differential genotype yield, hinting at ecophysiological adjustments including evapotranspiration and photosynthesis. The enviromic ensemble-based random regression model showcases superior predictive performance and efficiency compared to the baseline and kernel models, matching the best genotypes to specific geographic coordinates. Clustering analysis has identified regions that minimize genotype-environment (G × E) interactions. These findings underscore the potential of enviromics in crafting specific parental combinations to breed new, higher-yielding hybrid crops. The adequate use of envirotypic information can enhance the precision and efficiency of maize breeding by providing important inputs about the environmental factors that affect the average crop performance. Generating enviromic markers associated with grain yield can enable a better selection of hybrids for specific environments.
Collapse
Affiliation(s)
- Rafael T. Resende
- Plant Breeding Sector, School of Agronomy (EA)Federal University of Goiás (UFG)Av. Esperança, s/n, Samambaia CampusGoiâniaGO74690‐900Brazil
- TheCROP, A Precision Breeding ProjectAv. Esperança, n° 1533, FUNAPE, Samambaia Technological Park, Samambaia Campus – UFGGoiâniaGO74690‐612Brazil
| | - Alencar Xavier
- Corteva Agriscience8305 NW 62ndAveJohnstonIA50131USA
- Purdue University915 Mitch Daniels BlvdWest LafayetteIN47907USA
| | | | - Marcela P. M. Resende
- Plant Breeding Sector, School of Agronomy (EA)Federal University of Goiás (UFG)Av. Esperança, s/n, Samambaia CampusGoiâniaGO74690‐900Brazil
| | - Diego Jarquin
- University of Florida1604 McCarty Drive G052B McCarty Hall DGainesvilleFL32611USA
| | - Gustavo E. Marcatti
- TheCROP, A Precision Breeding ProjectAv. Esperança, n° 1533, FUNAPE, Samambaia Technological Park, Samambaia Campus – UFGGoiâniaGO74690‐612Brazil
- Forest Engineering DepartmentFederal University of São João del Rei (UFSJ)Sete Lagoas Campus, MG‐424 Highway, Km 47Sete LagoasMG35701‐970Brazil
| |
Collapse
|
8
|
Zhao Y, Lu J, Hu B, Jiao P, Gao B, Jiang Z, Liu S, Guan S, Ma Y. Cloning and functional analysis of ZmMADS42 gene in maize. GM CROPS & FOOD 2024; 15:105-117. [PMID: 38466176 PMCID: PMC10936638 DOI: 10.1080/21645698.2024.2328384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Maize (Zea mays L.) is the most important cereal crop in the world. Flowering period and photoperiod play important roles in the reproductive development of maize. This study, investigated ZmMADS42, a gene that is highly expressed in the shoot apical meristem. Agrobacterium infection was used to successfully obtain overexpressed ZmMADS42 plants. Fluorescence quantitative PCR revealed that the expression of the ZmMADS42 gene in the shoot apical meristem of transgenic plants was 2.8 times higher than that of the wild-type(WT). In addition, the expression of the ZmMADS42 gene in the endosperm was 2.4 times higher than that in the wild-type. The seed width of the T2 generation increased by 5.35%, whereas the seed length decreased by 7.78% compared with that of the wild-type. Dissection of the shoot tips of transgenic and wild-type plants from the 7-leaf stage to the 9-leaf stage revealed that the transgenic plants entered the differentiation stage earlier and exhibited more tassel meristems during their vegetative growth period. The mature transgenic plants were approximately 20 cm shorter in height and had a lower panicle position than the wild-type plants. Comparing the flowering period, the tasseling, powdering, and silking stages of the transgenic plants occurred 10 days earlier than those of the wild-type plants. The results showed that the ZmMADS42 gene played a significant role in regulating the flowering period and plant height of maize.
Collapse
Affiliation(s)
- Yang Zhao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jianyu Lu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Bo Hu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Bai Gao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhenzhong Jiang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Upadhyaya HD, Wang L, Paterson AH, Gowda CLL, Kumar R, Li J, Wang YH. Association mapping identifies stable loci containing novel genes for developmental and reproductive traits in sorghum. Genome 2024; 67:454-463. [PMID: 39412069 DOI: 10.1139/gen-2024-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Key message We mapped 11 sorghum traits, identified 33 candidate genes, and found a grain yield gene (GID1) that regulates seed development and a grass-specific tillering gene (DUF1618) transferred to Striga hermonthica.
Collapse
Affiliation(s)
- Hari D Upadhyaya
- Gene Bank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | - Lihua Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
- Anhui Province International Joint Research Center of Forage Bio-breeding, Chuzhou, 233100, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | - C L L Gowda
- Gene Bank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
| | - Rajendra Kumar
- Indian Agriculture Research Institute, New Delhi 110012, India
| | - Jieqin Li
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
- Anhui Province International Joint Research Center of Forage Bio-breeding, Chuzhou, 233100, China
| | - Yi-Hong Wang
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| |
Collapse
|
10
|
Cannon EK, Portwood JL, Hayford RK, Haley OC, Gardiner JM, Andorf CM, Woodhouse MR. Enhanced pan-genomic resources at the maize genetics and genomics database. Genetics 2024; 227:iyae036. [PMID: 38577974 DOI: 10.1093/genetics/iyae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/13/2024] [Indexed: 04/06/2024] Open
Abstract
Pan-genomes, encompassing the entirety of genetic sequences found in a collection of genomes within a clade, are more useful than single reference genomes for studying species diversity. This is especially true for a species like Zea mays, which has a particularly diverse and complex genome. Presenting pan-genome data, analyses, and visualization is challenging, especially for a diverse species, but more so when pan-genomic data is linked to extensive gene model and gene data, including classical gene information, markers, insertions, expression and proteomic data, and protein structures as is the case at MaizeGDB. Here, we describe MaizeGDB's expansion to include the genic subset of the Zea pan-genome in a pan-gene data center featuring the maize genomes hosted at MaizeGDB, and the outgroup teosinte Zea genomes from the Pan-Andropoganeae project. The new data center offers a variety of browsing and visualization tools, including sequence alignment visualization, gene trees and other tools, to explore pan-genes in Zea that were calculated by the pipeline Pandagma. Combined, these data will help maize researchers study the complexity and diversity of Zea, and to use the comparative functions to validate pan-gene relationships for a selected gene model.
Collapse
Affiliation(s)
- Ethalinda K Cannon
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - John L Portwood
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Rita K Hayford
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Olivia C Haley
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Jack M Gardiner
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Carson M Andorf
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
11
|
Dixon MM, Afkairin A, Davis JG, Chitwood-Brown J, Buchanan CM, Ippolito JA, Manter DK, Vivanco JM. Tomato domestication rather than subsequent breeding events reduces microbial associations related to phosphorus recovery. Sci Rep 2024; 14:9934. [PMID: 38689014 PMCID: PMC11061195 DOI: 10.1038/s41598-024-60775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
Legacy phosphorus (P) is a reservoir of sparingly available P, and its recovery could enhance sustainable use of nonrenewable mineral fertilizers. Domestication has affected P acquisition, but it is unknown if subsequent breeding efforts, like the Green Revolution (GR), had a similar effect. We examined how domestication and breeding events altered P acquisition by growing wild, traditional (pre-GR), and modern (post-GR) tomato in soil with legacy P but low bioavailable P. Wild tomatoes, particularly accession LA0716 (Solanum pennellii), heavily cultured rhizosphere P solubilizers, suggesting reliance on microbial associations to acquire P. Wild tomato also had a greater abundance of other putatively beneficial bacteria, including those that produce chelating agents and antibiotic compounds. Although wild tomatoes had a high abundance of these P solubilizers, they had lower relative biomass and greater P stress factor than traditional or modern tomato. Compared to wild tomato, domesticated tomato was more tolerant to P deficiency, and both cultivated groups had a similar rhizosphere bacterial community composition. Ultimately, this study suggests that while domestication changed tomato P recovery by reducing microbial associations, subsequent breeding processes have not further impacted microbial P acquisition mechanisms. Selecting microbial P-related traits that diminished with domestication may therefore increase legacy P solubilization.
Collapse
Affiliation(s)
- Mary M Dixon
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Antisar Afkairin
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Jessica G Davis
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jessica Chitwood-Brown
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Cassidy M Buchanan
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - James A Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- United States Department of Agriculture-Agricultural Research Service, Soil Management and Sugar Beet Research, Fort Collins, CO, USA
| | - Daniel K Manter
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
| | - Jorge M Vivanco
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
12
|
Patel R, Memon J, Kumar S, Patel DA, Sakure AA, Patel MB, Das A, Karjagi CG, Patel S, Patel U, Roychowdhury R. Genetic Diversity and Population Structure of Maize ( Zea mays L.) Inbred Lines in Association with Phenotypic and Grain Qualitative Traits Using SSR Genotyping. PLANTS (BASEL, SWITZERLAND) 2024; 13:823. [PMID: 38592835 PMCID: PMC10975177 DOI: 10.3390/plants13060823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Maize (Zea mays L.) is an important cereal and is affected by climate change. Therefore, the production of climate-smart maize is urgently needed by preserving diverse genetic backgrounds through the exploration of their genetic diversity. To achieve this, 96 maize inbred lines were used to screen for phenotypic yield-associated traits and grain quality parameters. These traits were studied across two different environments (Anand and Godhra) and polymorphic simple sequence repeat (SSR) markers were employed to investigate the genetic diversity, population structure, and trait-linked association. Genotype-environment interaction (GEI) reveals that most of the phenotypic traits were governed by the genotype itself across the environments, except for plant and ear height, which largely interact with the environment. The genotypic correlation was found to be positive and significant among protein, lysine and tryptophan content. Similarly, yield-attributing traits like ear girth, kernel rows ear-1, kernels row-1 and number of kernels ear-1 were strongly correlated to each other. Pair-wise genetic distance ranged from 0.0983 (1820194/T1 and 1820192/4-20) to 0.7377 (IGI-1101 and 1820168/T1). The SSRs can discriminate the maize population into three distinct groups and shortlisted two genotypes (IGI-1101 and 1820168/T1) as highly diverse lines. Out of the studied 136 SSRs, 61 were polymorphic to amplify a total of 131 alleles (2-3 per loci) with 0.46 average gene diversity. The Polymorphism Information Content (PIC) ranged from 0.24 (umc1578) to 0.58 (umc2252). Similarly, population structure analysis revealed three distinct groups with 19.79% admixture among the genotypes. Genome-wide scanning through a mixed linear model identifies the stable association of the markers umc2038, umc2050 and umc2296 with protein, umc2296 and umc2252 with tryptophan, and umc1535 and umc1303 with total soluble sugar. The obtained maize lines and SSRs can be utilized in future maize breeding programs in relation to other trait characterizations, developments, and subsequent molecular breeding performances for trait introgression into elite genotypes.
Collapse
Affiliation(s)
- Rumit Patel
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand 388110, India
| | - Juned Memon
- Department of Genetics and Plant Breeding, B. A. College of Agriculture, Anand Agricultural University, Anand 388110, India
| | - Sushil Kumar
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand 388110, India
| | - Dipak A. Patel
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand 388110, India
| | - Amar A. Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand 388110, India
| | - Manish B. Patel
- Main Maize Research Station, Anand Agricultural University, Godhra 389001, India
| | - Arna Das
- Department of Genetics and Plant Breeding, B. A. College of Agriculture, Anand Agricultural University, Anand 388110, India
| | | | - Swati Patel
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand 388110, India
| | - Ujjaval Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari 396450, India
| | - Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO)—Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
13
|
Khammona K, Dermail A, Suriharn K, Lübberstedt T, Wanchana S, Thunnom B, Poncheewin W, Toojinda T, Ruanjaichon V, Arikit S. Accelerating haploid induction rate and haploid validation through marker-assisted selection for qhir1 and qhir8 in maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1337463. [PMID: 38504887 PMCID: PMC10948437 DOI: 10.3389/fpls.2024.1337463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Doubled haploid (DH) technology becomes more routinely applied in maize hybrid breeding. However, some issues in haploid induction and identification persist, requiring resolution to optimize DH production. Our objective was to implement simultaneous marker-assisted selection (MAS) for qhir1 (MTL/ZmPLA1/NLD) and qhir8 (ZmDMP) using TaqMan assay in F2 generation of four BHI306-derived tropical × temperate inducer families. We also aimed to assess their haploid induction rate (HIR) in the F3 generation as a phenotypic response to MAS. We highlighted remarkable increases in HIR of each inducer family. Genotypes carrying qhir1 and qhir8 exhibited 1 - 3-fold higher haploid frequency than those carrying only qhir1. Additionally, the qhir1 marker was employed for verifying putative haploid seedlings at 7 days after planting. Flow cytometric analysis served as the gold standard test to assess the accuracy of the R1-nj and the qhir1 marker. The qhir1 marker showed high accuracy and may be integrated in multiple haploid identifications at early seedling stage succeeding pre-haploid sorting via R1-nj marker.
Collapse
Affiliation(s)
- Kanogporn Khammona
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Abil Dermail
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Khundej Suriharn
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Plant Breeding Research Center for Sustainable Agriculture, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | | | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Burin Thunnom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wasin Poncheewin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
- Rice Science Center, Kasetsart University, Nakhon Pathom, Thailand
| |
Collapse
|
14
|
Mitsuhashi S. Genetic diversity among maize (Zea mays L.) inbred lines adapted to Japanese climates. PLoS One 2024; 19:e0297549. [PMID: 38271395 PMCID: PMC10810424 DOI: 10.1371/journal.pone.0297549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Understanding the genetic diversity of inbred lines is vital for development of superior F1 varieties. The present study aimed to analyze Japanese maize parental inbred lines and determine their genetic diversity for future breeding. Genetic analyses were conducted using multiple methods. Principal component analysis (PCA), phylogenetic trees, and Bayesian clustering reflected borders between heterotic groups according to the derivation of each inbred line. A self-pollinated line derived from a classic F1 variety and another line from an open-pollinated population from the same derivation were classified as separate components by PCA and Bayesian clustering. The result suggests that open pollination could be essential in modern breeding. Of those classified as dent or flint based on their derivation, some had a combination of all components or clusters. Therefore, the classification of inbred lines should be based on their derivation and DNA markers. The findings will be valuable for breeding and genetic studies in Japan. Additionally, these techniques may be used to obtain a more significant number of SNPs and related phenotypic data.
Collapse
Affiliation(s)
- Shohei Mitsuhashi
- Institute of Livestock and Grassland Science, NARO, Nasushiobara, Tochigi, Japan
| |
Collapse
|
15
|
Zou C, Tan H, Huang K, Zhai R, Yang M, Huang A, Wei X, Mo R, Xiong F. Physiological Characteristic Changes and Transcriptome Analysis of Maize ( Zea mays L.) Roots under Drought Stress. Int J Genomics 2024; 2024:5681174. [PMID: 38269194 PMCID: PMC10807950 DOI: 10.1155/2024/5681174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Water deficit is a key limiting factor for limiting yield in maize (Zea mays L.). It is crucial to elucidate the molecular regulatory networks of stress tolerance for genetic enhancement of drought tolerance. The mechanism of drought tolerance of maize was explored by comparing physiological and transcriptomic data under normal conditions and drought treatment at polyethylene glycol- (PEG-) induced drought stress (5%, 10%, 15%, and 20%) in the root during the seedling stage. The content of saccharide, SOD, CAT, and MDA showed an upward trend, proteins showed a downward trend, and the levels of POD first showed an upward trend and then decreased. Compared with the control group, a total of 597, 2748, 6588, and 5410 differentially expressed genes were found at 5%, 10%, 15%, and 20% PEG, respectively, and 354 common DEGs were identified in these comparisons. Some differentially expressed genes were remarkably enriched in the MAPK signaling pathway and plant hormone signal transduction. The 50 transcription factors (TFs) divided into 15 categories were screened from the 354 common DEGs during drought stress. Auxin response factor 10 (ARF10), auxin-responsive protein IAA9 (IAA9), auxin response factor 14 (ARF14), auxin-responsive protein IAA1 (IAA1), auxin-responsive protein IAA27 (IAA27), and 1 ethylene response sensor 2 (ERS2) were upregulated. The two TFs, including bHLH 35 and bHLH 96, involved in the MAPK signal pathway and plant hormones pathway, are significantly upregulated in 5%, 10%, 15%, and 20% PEG stress groups. The present study provides greater insight into the fundamental transcriptome reprogramming of grain crops under drought.
Collapse
Affiliation(s)
- Chenglin Zou
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
| | - Hua Tan
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
| | - Kaijian Huang
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
| | - Ruining Zhai
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
| | - Meng Yang
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
| | - Aihua Huang
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
| | - Xinxing Wei
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
| | - Runxiu Mo
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
| | - Faqian Xiong
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
| |
Collapse
|
16
|
Shrestha A, Limay-Rios V, Brettingham DJL, Raizada MN. Maize pollen carry bacteria that suppress a fungal pathogen that enters through the male gamete fertilization route. FRONTIERS IN PLANT SCIENCE 2024; 14:1286199. [PMID: 38269134 PMCID: PMC10806238 DOI: 10.3389/fpls.2023.1286199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
In flowering plants, after being released from pollen grains, the male gametes use the style channel to migrate towards the ovary where they fertilize awaiting eggs. Environmental pathogens exploit the style passage, resulting in diseased progeny seed. The belief is that pollen also transmits pathogens into the style. By contrast, we hypothesized that pollen carries beneficial microbes that suppress environmental pathogens on the style passage. No prior studies have reported pollen-associated bacterial functions in any plant species. Here, bacteria were cultured from maize (corn) pollen encompassing wild ancestors and farmer-selected landraces from across the Americas, grown in a common field in Canada for one season. In total, 298 bacterial isolates were cultured, spanning 45 genera, 103 species, and 88 OTUs, dominated by Pantoea, Bacillus, Pseudomonas, Erwinia, and Microbacterium. Full-length 16S DNA-based taxonomic profiling showed that 78% of bacterial taxa from the major wild ancestor of maize (Parviglumis teosinte) were present in at least one cultivated landrace. The species names of the bacterial isolates were used to search the pathogen literature systematically; this preliminary evidence predicted that the vast majority of the pollen-associated bacteria analyzed are not maize pathogens. The pollen-associated bacteria were tested in vitro against a style-invading Fusarium pathogen shown to cause Gibberella ear rot (GER): 14 isolates inhibited this pathogen. Genome mining showed that all the anti-Fusarium bacterial species encode phzF, associated with biosynthesis of the natural fungicide, phenazine. To mimic the male gamete migration route, three pollen-associated bacterial strains were sprayed onto styles (silks), followed by Fusarium inoculation; these bacteria reduced GER symptoms and mycotoxin accumulation in progeny seed. Confocal microscopy was used to search for direct evidence that pollen-associated bacteria can defend living silks against Fusarium graminearum (Fg); bacterial strain AS541 (Kluyvera intermedia), isolated from pollen of ancestral Parviglumis, was observed to colonize the susceptible style/silk entry points of Fg (silk epidermis, trichomes, wounds). Furthermore, on style/silk tissue, AS541 colonized/aggregated on Fg hyphae, and was associated with Fg hyphal breaks. These results suggest that pollen has the potential to carry bacteria that can defend the style/silk passage against an environmental pathogen - a novel observation.
Collapse
Affiliation(s)
- Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Victor Limay-Rios
- Department of Plant Agriculture, University of Guelph, Ridgetown, ON, Canada
| | | | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Quattrone A, Yang Y, Yadav P, Weber KA, Russo SE. Nutrient and Microbiome-Mediated Plant-Soil Feedback in Domesticated and Wild Andropogoneae: Implications for Agroecosystems. Microorganisms 2023; 11:2978. [PMID: 38138123 PMCID: PMC10745641 DOI: 10.3390/microorganisms11122978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Plants influence the abiotic and biotic environment of the rhizosphere, affecting plant performance through plant-soil feedback (PSF). We compared the strength of nutrient and microbe-mediated PSF and its implications for plant performance in domesticated and wild grasses with a fully crossed greenhouse PSF experiment using four inbred maize genotypes (Zea mays ssp. mays b58, B73-wt, B73-rth3, and HP301), teosinte (Z. mays ssp. parviglumis), and two wild prairie grasses (Andropogon gerardii and Tripsacum dactyloides) to condition soils for three feedback species (maize B73-wt, teosinte, Andropogon gerardii). We found evidence of negative PSF based on growth, phenotypic traits, and foliar nutrient concentrations for maize B73-wt, which grew slower in maize-conditioned soil than prairie grass-conditioned soil. In contrast, teosinte and A. gerardii showed few consistent feedback responses. Both rhizobiome and nutrient-mediated mechanisms were implicated in PSF. Based on 16S rRNA gene amplicon sequencing, the rhizosphere bacterial community composition differed significantly after conditioning by prairie grass and maize plants, and the final soil nutrients were significantly influenced by conditioning, more so than by the feedback plants. These results suggest PSF-mediated soil domestication in agricultural settings can develop quickly and reduce crop productivity mediated by PSF involving changes to both the soil rhizobiomes and nutrient availability.
Collapse
Affiliation(s)
- Amanda Quattrone
- Complex Biosystems Ph.D. Program, University of Nebraska-Lincoln, Lincoln, NE 68583-0851, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583-0705, USA
| | - Yuguo Yang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
| | - Pooja Yadav
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
| | - Karrie A. Weber
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0340, USA
- Daugherty Water for Food Institute, University of Nebraska, Lincoln, NE 68588-6203, USA
| | - Sabrina E. Russo
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583-0705, USA
| |
Collapse
|
18
|
Ilyas MZ, Park H, Jang SJ, Cho J, Sa KJ, Lee JK. Association Mapping for Evaluation of Population Structure, Genetic Diversity, and Physiochemical Traits in Drought-Stressed Maize Germplasm Using SSR Markers. PLANTS (BASEL, SWITZERLAND) 2023; 12:4092. [PMID: 38140419 PMCID: PMC10747078 DOI: 10.3390/plants12244092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Globally, maize is one of the most consumed crops along with rice and wheat. However, maize is sensitive to different abiotic stress factors, such as drought, which have a significant impact on its production. The aims of this study were to investigate (1) genetic variation among 41 maize-inbred lines and the relationships among them and (2) significant marker-trait associations (SMTAs) between 7 selected physiochemical traits and 200 simple sequence repeat (SSR) markers to examine the genetics of these traits. A total of 1023 alleles were identified among the 41 maize-inbred lines using the 200 SSR loci, with a mean of 5.1 alleles per locus. The average major allele frequency, gene diversity, and polymorphism information content were 0.498, 0.627, and 0.579, respectively. The population structure analysis based on the 200 SSR loci divided the maize germplasm into two primary groups with an admixed group. Moreover, this study identified, respectively, 85 SMTAs and 31 SMTAs using a general linear model (Q GLM) and a mixed linear model (Q + K MLM) with statistically significant (p < 0.05 and <0.01) associations with the seven physiochemical traits (caffeic acid content, chlorogenic acid content, gallic acid content, ferulic acid content, 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity, leaf relative moisture content, total phenolic content). These SSR markers were highly correlated with one or more of the seven physiochemical traits. This study provides insights into the genetics of the 41 maize-inbred lines and their seven physiochemical traits and will be of assistance to breeders in the marker-assisted selection of maize for breeding programs.
Collapse
Affiliation(s)
- Muhammad Zahaib Ilyas
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Z.I.); (H.P.); (S.J.J.); (J.C.)
| | - Hyeon Park
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Z.I.); (H.P.); (S.J.J.); (J.C.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So Jung Jang
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Z.I.); (H.P.); (S.J.J.); (J.C.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jungeun Cho
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Z.I.); (H.P.); (S.J.J.); (J.C.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyu Jin Sa
- Department of Crop Science, College of Ecology & Environmental Sciences, Kyungpook National University, Sangju 37224, Republic of Korea;
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Z.I.); (H.P.); (S.J.J.); (J.C.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
19
|
Shrestha A, Limay-Rios V, Brettingham DJL, Raizada MN. Bacteria existing in pre-pollinated styles (silks) can defend the exposed male gamete fertilization channel of maize against an environmental Fusarium pathogen. FRONTIERS IN PLANT SCIENCE 2023; 14:1292109. [PMID: 38111882 PMCID: PMC10726056 DOI: 10.3389/fpls.2023.1292109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023]
Abstract
In flowering plants, fertilization requires exposing maternal style channels to the external environment to capture pollen and transmit its resident sperm nuclei to eggs. This results in progeny seed. However, environmental fungal pathogens invade developing seeds through the style. We hypothesized that prior to environmental exposure, style tissue already possesses bacteria that can protect styles and seed from such pathogens. We further hypothesized that farmers have been inadvertently selecting immature styles over many generations to have such bacteria. We tested these hypotheses in maize, a wind-pollinated crop, which has unusually long styles (silks) that are invaded by the economically-important fungal pathogen Fusarium graminearum (Fg). Here, unpollinated silk-associated bacteria were cultured from a wild teosinte ancestor of maize and diverse maize landraces selected by indigenous farmers across the Americas, grown in a common Canadian field for one season. The bacteria were taxonomically classified using 16S rRNA sequencing. In total, 201 bacteria were cultured, spanning 29 genera, 63 species, and 62 unique OTUs, dominated by Pseudomonas, Pantoea and Microbacterium. These bacteria were tested for their ability to suppress Fg in vitro which identified 10 strains belonging to 6 species: Rouxiella badensis, Pantoea ananatis, Pantoea dispersa, Pseudomonas koreensis, Rahnella aquatilis, and Ewingella americana. Two anti-Fg strains were sprayed onto silks before/after Fg inoculation, resulting in ≤90% reductions in disease (Gibberella ear rot) and 70-100% reductions in associated mycotoxins (deoxynivalenol and zearalenone) in progeny seeds. These strains also protected progeny seeds post-harvest. Confocal fluorescent imaging showed that one silk bacterium (Rouxiella AS112) colonized susceptible entry points of Fg on living silks including stigmatic trichomes, wounds, and epidermal surfaces where they formed thick biofilms. Post-infection, AS112 was associated with masses of dead Fg hyphae. These results suggest that the maize style (silk) is endowed with potent bacteria from the mother plant to protect itself and progeny from Fusarium. The evidence suggests this trait may have been selected by specific indigenous peoples, though this interpretation requires further study.
Collapse
Affiliation(s)
- Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Victor Limay-Rios
- Department of Plant Agriculture, University of Guelph, Ridgetown, ON, Canada
| | | | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
20
|
Afram Y, Amenorpe G, Bediako EA, Darkwa AA, Amegbor IK. Assessing the sensitivity of maize genotypes to gamma radiation for germination and physiological characteristics. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 271:107318. [PMID: 39492171 DOI: 10.1016/j.jenvrad.2023.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
To meet the rising demand for cereal-based food products, it is essential to create parent lines for hybrid development. Evaluating the sensitivity of maize genotypes to gamma rays is critical for successful mass irradiation to induce mutations. This study aimed to assess how maize genotypes respond to gamma radiation and determine an effective dosage for mutation breeding. Six maize genotypes were subjected to gamma radiation doses ranging from 0 to 750 Gy (s) 60Co. The irradiated seeds were evaluated in controlled conditions and then planted in the field for the assessment of physio-agronomic traits. The lethal dose (LD50) was established based on the germination rate of the M1 generation. Results demonstrated a decrease in germination percentage, plant height, survival rate, root length, and plant photosynthetic rate with escalating gamma radiation doses. The mean LD50, determined from the germination data, was 254.3 Gy. The radiation dosage range of 206.71-301.95 Gy proved effective in influencing both quantitative and qualitative characteristics. These findings provide valuable insights into the efficient utilization of gamma radiation in expediting the development of promising parent lines, which can be instrumental in hybridization efforts to produce superior maize varieties.
Collapse
Affiliation(s)
- Yayra Afram
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, P. O. Box 245, Sekondi, Ghana.
| | - Godwin Amenorpe
- Biotechnology and Nuclear Agricultural Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
| | - Elvis Asare Bediako
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Alfred A Darkwa
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Isaac Kodzo Amegbor
- Council for Scientific and Industrial Research (CSIR), Savanna Agricultural Research Institute, P. O. Box TL 52, Tamale, Ghana; Faculty of Agriculture and Natural Sciences, Department of Plant Breeding, University of the Free State, P.O. Box 339, Bloemfontein, South Africa
| |
Collapse
|
21
|
Shrestha S, Niraula D, Regmi S, Basnet S, Chhetri ST, Kandel BP. Performance evaluation and genetic parameters estimation of multi-companies maize hybrids in Lamahi Dang, Nepal. Heliyon 2023; 9:e14552. [PMID: 36967871 PMCID: PMC10031456 DOI: 10.1016/j.heliyon.2023.e14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Selection, a basic and crucial step of breeding, can be made efficient through the estimates of genetic parameters. Ten multi-company's maize hybrids and two Nepalese maize hybrids were used as standard checks and evaluated in a randomized complete block design with three replications. Analysis of variance for different characters revealed significant differences for most of the characters among the genotypes used. The phenotypic coefficient of variation (PCV) was observed to be higher than the genotypic coefficient of variation (GCV) for all traits studied suggesting those traits interacted with the environment. The traits under study showed a wide range of heritability estimates (24%-90%). Among the characters, highest heritability and genetic advance were recorded for grain yield. Path coefficient analysis showed that the plant height, ear weight, number of kernel rows cob-1 and number of kernel row-1 and thousand kernel weight showed positive direct effect on grain yield. Ear weight and number of kernels row-1 had significant and positive correlation with grain yield. Therefore, much attention should be given to ear weight and number of kernels row-1 as these traits are helpful for indirect selection. Star 9, 10V10, and Shrestha were observed as superior and yielded higher than Rampur Hybrid 10 and Khumal Hybrid 2 in terms of grain yield.
Collapse
|
22
|
A Comparative Study of Physicochemical Attributes of Pigmented Landrace Maize Varieties. J FOOD QUALITY 2022. [DOI: 10.1155/2022/6294336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Maize has been cultivated and continues to be cultivated for its usability in calorie supply to humans and livestock. There has been great interest in pigmented landrace maize varieties (PLMVs) due to their importance in the pharmaceutical industry. Landraces are to a large extent a repository of the gene pool that enriches biodiversity and maintains but also stabilizes the ecosystem in a sustainable way. PLMVs are still being cultivated by smallholder farmers in smaller portions of their fields and home surroundings despite the high adoption of white hybrid maize. This study examined the ash, moisture, mineral, crude protein, fat, and carbohydrate content of three different PLMVs from central (Ntcheu and Dedza districts) and northern (Mzimba district) Malawi. The mineral content of soils from fields where PLMVs were grown was also analyzed. The study areas experience a warm temperate climate and higher rainfall in summer than in winter but they differ in that Ntcheu has the highest average annual temperature of 20.3°C while Dedza receives the highest annual precipitation of about 1010 mm. Mzimba’s average annual temperature and precipitation are 20.1°C and 915 mm, respectively. The study showed that orange maize from Dedza had a significantly higher content of calcium (71.00 ± 0.58 mg·kg−1), magnesium (819.00 ± 0.58 mg·kg−1), and phosphorus (2720.35 ± 0.03 mg·kg−1). Significantly higher contents of zinc (54.61 ± 0.43 mg·kg−1) and potassium (808.58 ± 0.27 mg·kg−1) were observed in purple maize from Dedza and Ntcheu, respectively. Red maize from Dedza had a significantly higher content of iron (59.80 ± 0.26 mg·kg−1). Purple maize from Dedza has significantly higher carbohydrate content (65.52 ± 0.07%). The findings also revealed that red maize from Dedza provenance had a high content of crude protein (12.57 ± 0.07%) and fat (10.73 ± 0.14%). Moisture (17.30 ± 0.21%) and ash (2.28 ± 0.02%) were significantly higher in orange maize from Dedza. Dedza’s provenance revealed a high content of the analyzed attributes in PLMVs. Mineral analysis showed different levels of mineral bioavailability in different PLMVs and in the soils where maize was grown. It can, therefore, be concluded that production location and maize variety have an influence on the attributes of PLMVs. Understanding the physicochemical attributes of PLMVs and its maximum utilization have the potential of improving food and nutrition security in Sub-Saharan African countries and globally.
Collapse
|
23
|
Mathiang EA, Sa KJ, Park H, Kim YJ, Lee JK. Genetic Diversity and Population Structure of Normal Maize Germplasm Collected in South Sudan Revealed by SSR Markers. PLANTS (BASEL, SWITZERLAND) 2022; 11:2787. [PMID: 36297809 PMCID: PMC9611378 DOI: 10.3390/plants11202787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Maize is one of the leading global cereals, and in South Sudan maize cultivation occurs in nearly all of the country's agro-ecological zones. Despite its widespread cultivation, farmers in South Sudan depend on undeveloped varieties, which results in very low yields in the field. In the current study, 27 simple sequence repeat (SSR) markers were used to investigate genetic diversity and population structures among 37 landrace maize accessions collected from farmers' fields in South Sudan. In total, 200 alleles were revealed with an average of 7.4 alleles per locus and a range from 3.0 to 13.0 alleles per locus. The observed heterozygosity values ranged from 0.06 to 0.91 with an average of 0.35. High polymorphic information content (PIC) values were identified with a mean of 0.69, which indicates the informativeness of the chosen SSR loci. Genetic structure analysis revealed a moderate genetic differentiation among the maize populations with a fixation index of 0.16, while there was very high genetic differentiation within the groups of populations of three regions with a mean fixation index (F) of 0.37. An unweighted pair group method with an arithmetic mean (UPGMA) dendrogram clustered the 37 maize accessions into three groups with 43% genetic similarity. The clustering pattern of the maize accessions was moderately consistent with their collection area. The findings of this study will provide maize breeders with a better understanding of maize diversification as well as a reserve of genetic resources for use in the selection of advantageous and useful resources for the development of maize varieties in South Sudan.
Collapse
Affiliation(s)
- Emmanuel Andrea Mathiang
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hyeon Park
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Yeon Joon Kim
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
24
|
Lima AF, Bernal J, Venâncio MGS, de Souza BHS, Carvalho GA. Comparative Tolerance Levels of Maize Landraces and a Hybrid to Natural Infestation of Fall Armyworm. INSECTS 2022; 13:insects13070651. [PMID: 35886827 PMCID: PMC9316814 DOI: 10.3390/insects13070651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Exploiting the tolerance of plants against herbivorous insects is a viable pest management alternative, especially where conventional controls are ineffective. For example, due to the inefficacy of currently adopted practices, new strategies and methods are needed for Spodoptera frugiperda management in maize. This study evaluated the tolerance levels of maize landraces and a conventional hybrid under natural infestation of S. frugiperda. We found promising sources of tolerance among the landraces, evident as tolerance indices that varied across the landraces and hybrid we evaluated. Abstract Insect pests such as Spodoptera frugiperda cause significant losses to maize (Zea mays mays). Control of S. frugiperda is difficult, but the use of insect resistant cultivars, including tolerant cultivars, is a promising alternative, and landraces are a potential source of insect resistance. This study investigated tolerance to S. frugiperda in five Brazilian landraces, Amarelão, Aztequinha, Branco Antigo, Palha Roxa, and São Pedro, in relation to one conventional (non-Bt) hybrid, BM207, under field conditions. We assessed tolerance as the ratio of insecticide-free to insecticide-protected plants for plant height, stem diameter, and leaf chlorophyll content at two plant stages. Tolerance ratios varied across the maize genotypes, but inconsistently across plant variables, and cluster analysis revealed three groups based on tolerance ratios. A first group contained genotypes similarly tolerant to S. frugiperda, BM207, Palha Roxa, São Pedro, and Aztequinha, while the second and third groups each contained single genotypes, Amarelão, and Branco Antigo, which were considered not tolerant. Overall, the landraces Palha Roxa, São Pedro, and Aztequinha compared favorably to BM207 in terms of tolerance, and therefore may be valuable for management of this pest, and as germplasm sources to improve tolerance in other cultivars.
Collapse
Affiliation(s)
- Andreísa Fabri Lima
- Department of Entomology, Lavras Federal University (UFLA), Lavras 37200-900, MG, Brazil; (A.F.L.); (M.G.S.V.); (G.A.C.)
| | - Julio Bernal
- Department of Entomology, Texas A&M University, College Station, TX 77840, USA
- Correspondence: (J.B.); (B.H.S.d.S.)
| | - Maria Gabriela Silva Venâncio
- Department of Entomology, Lavras Federal University (UFLA), Lavras 37200-900, MG, Brazil; (A.F.L.); (M.G.S.V.); (G.A.C.)
| | - Bruno Henrique Sardinha de Souza
- Department of Entomology, Lavras Federal University (UFLA), Lavras 37200-900, MG, Brazil; (A.F.L.); (M.G.S.V.); (G.A.C.)
- Correspondence: (J.B.); (B.H.S.d.S.)
| | - Geraldo Andrade Carvalho
- Department of Entomology, Lavras Federal University (UFLA), Lavras 37200-900, MG, Brazil; (A.F.L.); (M.G.S.V.); (G.A.C.)
| |
Collapse
|
25
|
Malhotra N, Sharma P, Sood H, Chandora R, Arya M, Rana JC, Singh M. Agro-Morphological Characterization and Nutritional Profiling of Traditional Himalayan Crop Landraces for Their Promotion Toward Mainstream Agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:898220. [PMID: 35812955 PMCID: PMC9258745 DOI: 10.3389/fpls.2022.898220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The northwest Indian Himalayas are often regarded as a biological hotspot for the presence of rich agro-biodiversity harboring locally adapted traditional crop landraces facing utter neglect owing to modern agricultural systems promoting high-yielding varieties. Addressing this challenge requires extricating the potential of such cultivars in terms of agro-morphological and nutritional attributes. In this study, 29 traditional crop landraces of maize (11), paddy (07), finger millet (03), buckwheat (05), and naked barley (03) were characterized and evaluated for target traits of interest. In maize, Chitkanu emerged as an early maturing landrace (107 days) with high concentrations of zinc (Zn), iron (Fe), and potassium (K), and Safed makki showed the highest 100-seed weight (28.20 g). Similarly, Bamkua dhan exhibited high concentrations of K and phosphorus (P), and Lamgudi dhan showed a high protein content (14.86 g/100 g) among paddy landraces. Ogla-I and Phapra-I showed high contents of protein (14.80 g/100 g) and flavonoids (20.50 mg/g) among buckwheat landraces, respectively, followed by Nei-I, which exhibited the highest protein content (15.66 g/100 g) among naked barley landraces. Most of the target traits varied significantly (p < 0.05) among evaluated samples, except those associated with finger millet landraces. The grouping pattern obtained by principal component analysis (PCA) and multidimensional scaling (MDS) was congruent with the geographical relationship among the crop landraces. This study led to the identification of elite crop landraces having useful variations that could be exploited in plant breeding programs and biofortification strategies for future crop improvement. Our endeavor would aid in conserving the depleting Himalayan agro-biodiversity and promoting versatile traditional crops toward mainstream agriculture vis-à-vis future nutritional security.
Collapse
Affiliation(s)
- Nikhil Malhotra
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources Regional Station, Shimla, India
| | - Paras Sharma
- Indian Council of Medical Research (ICMR)-National Institute of Nutrition, Hyderabad, India
| | - Hemant Sood
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Rahul Chandora
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources Regional Station, Shimla, India
| | - Mamta Arya
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources Regional Station, Bhowali, India
| | - Jai Chand Rana
- Alliance of Bioversity International and CIAT, New Delhi, India
| | - Mohar Singh
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources Regional Station, Shimla, India
| |
Collapse
|
26
|
Wei Y, Liu X, Ge S, Zhang H, Che X, Liu S, Liu D, Li H, Gu X, He L, Li Z, Xu J. Involvement of Phospholipase C in Photosynthesis and Growth of Maize Seedlings. Genes (Basel) 2022; 13:genes13061011. [PMID: 35741773 PMCID: PMC9222606 DOI: 10.3390/genes13061011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
Phospholipase C is an enzyme that catalyzes the hydrolysis of glycerophospholipids and can be classified as phosphoinositide-specific PLC (PI-PLC) and non-specific PLC (NPC), depending on its hydrolytic substrate. In maize, the function of phospholipase C has not been well characterized. In this study, the phospholipase C inhibitor neomycin sulfate (NS, 100 mM) was applied to maize seedlings to investigate the function of maize PLC. Under the treatment of neomycin sulfate, the growth and development of maize seedlings were impaired, and the leaves were gradually etiolated and wilted. The analysis of physiological and biochemical parameters revealed that inhibition of phospholipase C affected photosynthesis, photosynthetic pigment accumulation, carbon metabolism and the stability of the cell membrane. High-throughput RNA-seq was conducted, and differentially expressed genes (DEGS) were found significantly enriched in photosynthesis and carbon metabolism pathways. When phospholipase C activity was inhibited, the expression of genes related to photosynthetic pigment accumulation was decreased, which led to lowered chlorophyll. Most of the genes related to PSI, PSII and TCA cycles were down-regulated and the net photosynthesis was decreased. Meanwhile, genes related to starch and sucrose metabolism, the pentose phosphate pathway and the glycolysis/gluconeogenesis pathway were up-regulated, which explained the reduction of starch and total soluble sugar content in the leaves of maize seedlings. These findings suggest that phospholipase C plays a key role in photosynthesis and the growth and development of maize seedlings.
Collapse
Affiliation(s)
- Yulei Wei
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Xinyu Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Shengnan Ge
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Haiyang Zhang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Xinyang Che
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Shiyuan Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Debin Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Huixin Li
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Xinru Gu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Lin He
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Zuotong Li
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
- Correspondence: (Z.L.); (J.X.)
| | - Jingyu Xu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China
- Correspondence: (Z.L.); (J.X.)
| |
Collapse
|
27
|
Population Structure Analysis and Association Mapping for Turcicum Leaf Blight Resistance in Tropical Maize Using SSR Markers. Genes (Basel) 2022; 13:genes13040618. [PMID: 35456424 PMCID: PMC9030036 DOI: 10.3390/genes13040618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Maize is an important cereal crop in the world for feed, food, fodder, and raw materials of industries. Turcicum leaf blight (TLB) is a major foliar disease that can cause more than 50% yield losses in maize. Considering this, the molecular diversity, population structure, and genome-wide association study (GWAS) for TLB resistance were studied in 288 diverse inbred lines genotyped using 89 polymorphic simple sequence repeats (SSR) markers. These lines werescreened for TLB disease at two hot-spot locations under artificially inoculated conditions. The average percent disease incidence (PDI) calculated for each genotype ranged from 17 (UMI 1201) to 78% (IML 12-22) with an overall mean of 40%. The numbers of alleles detected at a locus ranged from twoto nine, with a total of 388 alleles. The polymorphic information content (PIC) of each marker ranged between 0.04 and 0.86. Out of 89 markers, 47 markers were highly polymorphic (PIC ≥ 0.60). This indicated that the SSR markers used were very informative and suitable for genetic diversity, population structure, and marker-trait association studies.The overall observed homozygosity for highly polymorphic markers was 0.98, which indicated that lines used were genetically pure. Neighbor-joining clustering, factorial analysis, and population structure studies clustered the 288 lines into 3–5 groups. The patterns of grouping were in agreement with the origin and pedigree records of the genotypesto a greater extent.A total of 94.10% lines were successfully assigned to one or another group at a membership probability of ≥0.60. An analysis of molecular variance (AMOVA) revealed highly significant differences among populations and within individuals. Linkage disequilibrium for r2 and D′ between loci ranged from 0 to 0.77 and 0 to 1, respectively. A marker trait association analysis carried out using a general linear model (GLM) and mixed linear model (MLM), identified 15 SSRs markers significantly associated with TLB resistance.These 15 markers were located on almost all chromosomes (Chr) except 7, 8, and 9. The phenotypic variation explained by these loci ranged from 6% (umc1367) to 26% (nc130, phi085). Maximum 7 associated markers were located together on Chr 2 and 5. The selected regions identified on Chr 2 and 5 corroborated the previous studies carried out in the Indian maize germplasm. Further, 11 candidate genes were identified to be associated with significant markers. The identified sources for TLB resistance and associated markers may be utilized in molecular breeding for the development of suitable genotypes.
Collapse
|
28
|
Kumar B, Rakshit S, Kumar S, Singh BK, Lahkar C, Jha AK, Kumar K, Kumar P, Choudhary M, Singh SB, Amalraj JJ, Prakash B, Khulbe R, Kamboj MC, Chirravuri NN, Hossain F. Genetic Diversity, Population Structure and Linkage Disequilibrium Analyses in Tropical Maize Using Genotyping by Sequencing. PLANTS (BASEL, SWITZERLAND) 2022; 11:799. [PMID: 35336681 PMCID: PMC8955159 DOI: 10.3390/plants11060799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Several maize breeding programs in India have developed numerous inbred lines but the lines have not been characterized using high-density molecular markers. Here, we studied the molecular diversity, population structure, and linkage disequilibrium (LD) patterns in a panel of 314 tropical normal corn, two sweet corn, and six popcorn inbred lines developed by 17 research centers in India, and 62 normal corn from the International Maize and Wheat Improvement Center (CIMMYT). The 384 inbred lines were genotyped with 60,227 polymorphic single nucleotide polymorphisms (SNPs). Most of the pair-wise relative kinship coefficients (58.5%) were equal or close to 0, which suggests the lack of redundancy in the genomic composition in the majority of inbred lines. Genetic distance among most pairs of lines (98.3%) varied from 0.20 to 0.34 as compared with just 1.7% of the pairs of lines that differed by <0.20, which suggests greater genetic variation even among sister lines. The overall average of 17% heterogeneity was observed in the panel indicated the need for further inbreeding in the high heterogeneous genotypes. The mean nucleotide diversity and frequency of polymorphic sites observed in the panel were 0.28 and 0.02, respectively. The model-based population structure, principal component analysis, and phylogenetic analysis revealed three to six groups with no clear patterns of clustering by centers-wise breeding lines, types of corn, kernel characteristics, maturity, plant height, and ear placement. However, genotypes were grouped partially based on their source germplasm from where they derived.
Collapse
Affiliation(s)
- Bhupender Kumar
- ICAR-Indian Institute of Maize Research, Ludhiana 141004, India; (B.K.); (S.K.); (B.K.S.); (C.L.); (A.K.J.); (K.K.); (P.K.); (M.C.); (S.B.S.)
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, Ludhiana 141004, India; (B.K.); (S.K.); (B.K.S.); (C.L.); (A.K.J.); (K.K.); (P.K.); (M.C.); (S.B.S.)
| | - Sonu Kumar
- ICAR-Indian Institute of Maize Research, Ludhiana 141004, India; (B.K.); (S.K.); (B.K.S.); (C.L.); (A.K.J.); (K.K.); (P.K.); (M.C.); (S.B.S.)
| | - Brijesh Kumar Singh
- ICAR-Indian Institute of Maize Research, Ludhiana 141004, India; (B.K.); (S.K.); (B.K.S.); (C.L.); (A.K.J.); (K.K.); (P.K.); (M.C.); (S.B.S.)
| | - Chayanika Lahkar
- ICAR-Indian Institute of Maize Research, Ludhiana 141004, India; (B.K.); (S.K.); (B.K.S.); (C.L.); (A.K.J.); (K.K.); (P.K.); (M.C.); (S.B.S.)
| | - Abhishek Kumar Jha
- ICAR-Indian Institute of Maize Research, Ludhiana 141004, India; (B.K.); (S.K.); (B.K.S.); (C.L.); (A.K.J.); (K.K.); (P.K.); (M.C.); (S.B.S.)
| | - Krishan Kumar
- ICAR-Indian Institute of Maize Research, Ludhiana 141004, India; (B.K.); (S.K.); (B.K.S.); (C.L.); (A.K.J.); (K.K.); (P.K.); (M.C.); (S.B.S.)
| | - Pardeep Kumar
- ICAR-Indian Institute of Maize Research, Ludhiana 141004, India; (B.K.); (S.K.); (B.K.S.); (C.L.); (A.K.J.); (K.K.); (P.K.); (M.C.); (S.B.S.)
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana 141004, India; (B.K.); (S.K.); (B.K.S.); (C.L.); (A.K.J.); (K.K.); (P.K.); (M.C.); (S.B.S.)
| | - Shyam Bir Singh
- ICAR-Indian Institute of Maize Research, Ludhiana 141004, India; (B.K.); (S.K.); (B.K.S.); (C.L.); (A.K.J.); (K.K.); (P.K.); (M.C.); (S.B.S.)
| | - John J. Amalraj
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Bhukya Prakash
- ICAR-Directorate of Poultry Research, Hyderabad 500030, India;
| | - Rajesh Khulbe
- Department of Crop Imrovement, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora 263601, India;
| | - Mehar Chand Kamboj
- Department of Plant Breeding, CCS-Haryana Agricultural University, Regional Research Station, Uchani 132001, India;
| | - Neeraja N. Chirravuri
- Department of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India;
| | - Firoz Hossain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| |
Collapse
|
29
|
Elisa DH, Marcela GM, Janet Alejandra GU, Martha Elena DH. The nutraceutical value of maize (Zea mays L.) landraces and the determinants of its variability: A review. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2021.103399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Egan LM, Conaty WC, Stiller WN. Core Collections: Is There Any Value for Cotton Breeding? FRONTIERS IN PLANT SCIENCE 2022; 13:895155. [PMID: 35574064 PMCID: PMC9096653 DOI: 10.3389/fpls.2022.895155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/06/2022] [Indexed: 05/08/2023]
Abstract
Global plant breeding activities are reliant on the available genetic variation held in extant varieties and germplasm collections. Throughout the mid- to late 1900s, germplasm collecting efforts were prioritized for breeding programs to archive precious material before it disappeared and led to the development of the numerous large germplasm resources now available in different countries. In recent decades, however, the maintenance and particularly the expansion of these germplasm resources have come under threat, and there has been a significant decline in investment in further collecting expeditions, an increase in global biosecurity restrictions, and restrictions placed on the open exchange of some commercial germplasm between breeders. The large size of most genebank collections, as well as constraints surrounding the availability and reliability of accurate germplasm passport data and physical or genetic characterization of the accessions in collections, limits germplasm utilization by plant breeders. To overcome these constraints, core collections, defined as a representative subset of the total germplasm collection, have gained popularity. Core collections aim to increase germplasm utilization by containing highly characterized germplasm that attempts to capture the majority of the variation in a whole collection. With the recent availability of many new genetic tools, the potential to unlock the value of these resources can now be realized. The Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program supplies 100% of the cotton cultivars grown in Australia. The program is reliant on the use of plant genetic resources for the development of improved cotton varieties to address emerging challenges in pest and disease resistance as well as the global changes occurring in the climate. Currently, the CSIRO germplasm collection is actively maintained but underutilized by plant breeders. This review presents an overview of the Australian cotton germplasm resources and discusses the appropriateness of a core collection for cotton breeding programs.
Collapse
|
31
|
Passera A, Follador A, Morandi S, Miotti N, Ghidoli M, Venturini G, Quaglino F, Brasca M, Casati P, Pilu R, Bulgarelli D. Bacterial Communities in the Embryo of Maize Landraces: Relation with Susceptibility to Fusarium Ear Rot. Microorganisms 2021; 9:microorganisms9112388. [PMID: 34835513 PMCID: PMC8621305 DOI: 10.3390/microorganisms9112388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Locally adapted maize accessions (landraces) represent an untapped resource of nutritional and resistance traits for breeding, including the shaping of distinct microbiota. Our study focused on five different maize landraces and a reference commercial hybrid, showing different susceptibility to fusarium ear rot, and whether this trait could be related to particular compositions of the bacterial microbiota in the embryo, using different approaches. Our cultivation-independent approach utilized the metabarcoding of a portion of the 16S rRNA gene to study bacterial populations in these samples. Multivariate statistical analyses indicated that the microbiota of the embryos of the accessions grouped in two different clusters: one comprising three landraces and the hybrid, one including the remaining two landraces, which showed a lower susceptibility to fusarium ear rot in field. The main discriminant between these clusters was the frequency of Firmicutes, higher in the second cluster, and this abundance was confirmed by quantification through digital PCR. The cultivation-dependent approach allowed the isolation of 70 bacterial strains, mostly Firmicutes. In vivo assays allowed the identification of five candidate biocontrol strains against fusarium ear rot. Our data revealed novel insights into the role of the maize embryo microbiota and set the stage for further studies aimed at integrating this knowledge into plant breeding programs.
Collapse
Affiliation(s)
- Alessandro Passera
- Department of Agricultural and Environmental Sciences–Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy; (A.F.); (N.M.); (M.G.); (G.V.); (F.Q.); (P.C.); (R.P.)
- Correspondence:
| | - Alessia Follador
- Department of Agricultural and Environmental Sciences–Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy; (A.F.); (N.M.); (M.G.); (G.V.); (F.Q.); (P.C.); (R.P.)
| | - Stefano Morandi
- Institute of Sciences of Food Production, Italian National Research Council, Via Celoria 2, 20133 Milan, Italy; (S.M.); (M.B.)
| | - Niccolò Miotti
- Department of Agricultural and Environmental Sciences–Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy; (A.F.); (N.M.); (M.G.); (G.V.); (F.Q.); (P.C.); (R.P.)
| | - Martina Ghidoli
- Department of Agricultural and Environmental Sciences–Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy; (A.F.); (N.M.); (M.G.); (G.V.); (F.Q.); (P.C.); (R.P.)
| | - Giovanni Venturini
- Department of Agricultural and Environmental Sciences–Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy; (A.F.); (N.M.); (M.G.); (G.V.); (F.Q.); (P.C.); (R.P.)
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences–Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy; (A.F.); (N.M.); (M.G.); (G.V.); (F.Q.); (P.C.); (R.P.)
| | - Milena Brasca
- Institute of Sciences of Food Production, Italian National Research Council, Via Celoria 2, 20133 Milan, Italy; (S.M.); (M.B.)
| | - Paola Casati
- Department of Agricultural and Environmental Sciences–Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy; (A.F.); (N.M.); (M.G.); (G.V.); (F.Q.); (P.C.); (R.P.)
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences–Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy; (A.F.); (N.M.); (M.G.); (G.V.); (F.Q.); (P.C.); (R.P.)
| | - Davide Bulgarelli
- Plant Sciences, School of Life Sciences, University of Dundee, Invergowrie DD2 5DA, UK;
| |
Collapse
|
32
|
Rios-Galicia B, Villagómez-Garfias C, De la Vega-Camarillo E, Guerra-Camacho JE, Medina-Jaritz N, Arteaga-Garibay RI, Villa-Tanaca L, Hernández-Rodríguez C. The Mexican giant maize of Jala landrace harbour plant-growth-promoting rhizospheric and endophytic bacteria. 3 Biotech 2021; 11:447. [PMID: 34631348 DOI: 10.1007/s13205-021-02983-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/04/2021] [Indexed: 01/02/2023] Open
Abstract
The giant landrace of maize Jala is a native crop cultured in Nayarit and Jalisco States in the occident of México. In this study, after screening 374 rhizospheric and endophytic bacteria isolated from rhizospheric soil, root, and seed tissues of maize Jala, a total of 16 bacterial strains were selected for their plant-growth-promoting potential and identified by 16S rRNA phylogenetic analysis. The isolates exhibited different combinations of phenotypic traits, including solubilisation of phosphate from hydroxyapatite, production of a broad spectrum of siderophores such as cobalt, iron, molybdenum, vanadium, or zinc (Co2+, Fe3+, Mo2 +, V5+, Zn2+), and nitrogen fixation capabilities, which were detected in both rhizospheric and endophytic strains. Additional traits such as production of 1-aminocyclopropane-1-carboxylate deaminase and a high-rate production of Indoleacetic Acid were exclusively detected on endophytic isolates. Among the selected strains, the rhizospheric Burkholderia sp., and Klebsiella variicola, and the endophytic Pseudomonas protegens significantly improved the growth of maize plants in greenhouse assays and controlled the infection against Fusarium sp. 50 on fresh maize cobs. These results present the first deep approach on handling autochthonous microorganisms from native maize with a potential biotechnological application in sustainable agriculture as biofertilizers or biopesticides.
Collapse
Affiliation(s)
- Bibiana Rios-Galicia
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Catalina Villagómez-Garfias
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Esaú De la Vega-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Jairo Eder Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Nora Medina-Jaritz
- Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Ramón Ignacio Arteaga-Garibay
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Boulevard de la Biodiversidad No. 400, Rancho Las Cruces, 47600 Tepatitlán de Morelos, Jalisco Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| |
Collapse
|
33
|
Woodhouse MR, Cannon EK, Portwood JL, Harper LC, Gardiner JM, Schaeffer ML, Andorf CM. A pan-genomic approach to genome databases using maize as a model system. BMC PLANT BIOLOGY 2021; 21:385. [PMID: 34416864 PMCID: PMC8377966 DOI: 10.1186/s12870-021-03173-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/11/2021] [Indexed: 05/21/2023]
Abstract
Research in the past decade has demonstrated that a single reference genome is not representative of a species' diversity. MaizeGDB introduces a pan-genomic approach to hosting genomic data, leveraging the large number of diverse maize genomes and their associated datasets to quickly and efficiently connect genomes, gene models, expression, epigenome, sequence variation, structural variation, transposable elements, and diversity data across genomes so that researchers can easily track the structural and functional differences of a locus and its orthologs across maize. We believe our framework is unique and provides a template for any genomic database poised to host large-scale pan-genomic data.
Collapse
Affiliation(s)
| | - Ethalinda K Cannon
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - John L Portwood
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - Lisa C Harper
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - Jack M Gardiner
- Division of Animal Sciences, University of Missouri, 65211, Columbia, MO, USA
| | - Mary L Schaeffer
- Division of Plant Sciences, University of Missouri, 65211, Columbia, MO, USA
| | - Carson M Andorf
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
34
|
Babić V, Andjelkovic V, Jovovic Z, Babic M, Vasic V, Kravic N. Diversity Assessment of the Montenegrin Maize Landrace Gene Pool Maintained in Two Gene Banks. PLANTS 2021; 10:plants10081503. [PMID: 34451548 PMCID: PMC8399334 DOI: 10.3390/plants10081503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/04/2022]
Abstract
Due to the loss of agro-biodiversity, there is a strong effort to find apparent and efficient mechanisms for the conservation and sustainable use of genetic diversity. A joint monitoring of the diversity and collections structure of the Montenegrin maize landraces conserved in the Serbian (MRIZPGB) and Montenegrin (MGB) gene banks has been conducted in order to improve the composition of the collections and to identify and eliminate possible redundancy. Based on a separate analysis of white- and yellow-orange maize landraces, it can be concluded that the diversity and evolution of distinct maize landraces grown and collected in Montenegro have been simultaneously shaped by both environmental (i.e., natural selection) and socially driven factors (farmers’ selection, migration and colonization processes of the human population). Although it has been determined that the authenticity and variability of the Montenegrin maize landraces gene pool have largely been preserved in the MRIZPGB collection, a significant amount of redundancy was observed. The obtained results will contribute to the cost-efficient conservation of the maize gene pool in the Montenegrin and Serbian gene banks. The recognized and well-preserved original variability of the MRIZPGB and MGB Montenegrin gene pool represents a valuable source for pre-breeding activities on broadening the white and flint maize breeding programmes under temperate conditions.
Collapse
Affiliation(s)
- Vojka Babić
- Maize Research Institute Zemun Polje, Slobodana Bajica 1, 11185 Belgrade, Serbia; (V.A.); (N.K.)
- Correspondence:
| | - Violeta Andjelkovic
- Maize Research Institute Zemun Polje, Slobodana Bajica 1, 11185 Belgrade, Serbia; (V.A.); (N.K.)
| | - Zoran Jovovic
- Faculty of Biotechnology, University of Montenegro, Mihaila Lalića 1, 81000 Podgorica, Montenegro;
| | - Milosav Babic
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Vladimir Vasic
- Department of Statistics and Mathematics, Faculty of Economics, University of Belgrade, Kamenička 6, 11000 Belgrade, Serbia;
| | - Natalija Kravic
- Maize Research Institute Zemun Polje, Slobodana Bajica 1, 11185 Belgrade, Serbia; (V.A.); (N.K.)
| |
Collapse
|
35
|
Matus-Acuña V, Caballero-Flores G, Martínez-Romero E. The influence of maize genotype on the rhizosphere eukaryotic community. FEMS Microbiol Ecol 2021; 97:6261178. [PMID: 33930111 DOI: 10.1093/femsec/fiab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/28/2021] [Indexed: 01/04/2023] Open
Abstract
The microbiota colonizing the rhizosphere contributes to plant growth, productivity, carbon sequestration and phytoremediation. Several studies address plant-associated bacteria; however, few studies analyze the effect of plant genotype on the eukaryotic community. Here, we analyzed the eukaryotic composition of maize rhizosphere from three different plant landraces and one inbred line grown in the same soil (common garden approach). This experimental design, coupled with 18S rDNA gene amplicon sequencing, allowed us to test the influence of maize and its genotype on the rhizosphere's eukaryotic community. We found that plant growth modified the eukaryotic community in soil, as diversity comparisons between maize rhizosphere and unplanted soil revealed significantly different eukaryotic composition. Various genera of nematodes and fungi, predominantly bacterial feeding nematodes and mycorrhizal fungi among other taxa, were increased in the rhizosphere samples. We also observed that maize genotype differentially shaped the relative abundance of the following fungal families in the rhizosphere: Acaulosporaceae, Aspergillaceae, Chaetomiaceae, Claroideoglomeraceae, Corticiaceae, Mortierellaceae, Trichocomaceae and Trichomeriaceae. Thus, plant genotype has a selective influence on establishing fungal communities in the rhizosphere. This study emphasizes the importance of an integrated consideration of plant genetics for future agricultural applications of microbes to crops.
Collapse
Affiliation(s)
- Violeta Matus-Acuña
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
36
|
Importance of Landraces in Cereal Breeding for Stress Tolerance. PLANTS 2021; 10:plants10071267. [PMID: 34206299 PMCID: PMC8309184 DOI: 10.3390/plants10071267] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
The renewed focus on cereal landraces is a response to some negative consequences of modern agriculture and conventional breeding which led to a reduction of genetic diversity. Cereal landraces are still cultivated on marginal lands due to their adaptability to unfavourable conditions, constituting an important source of genetic diversity usable in modern plant breeding to improve the adaptation to abiotic or biotic stresses, yield performance and quality traits in limiting environments. Traditional agricultural production systems have played an important role in the evolution and conservation of wide variability in gene pools within species. Today, on-farm and ex situ conservation in gene bank collections, together with data sharing among researchers and breeders, will greatly benefit cereal improvement. Many efforts are usually made to collect, organize and phenotypically and genotypically analyse cereal landrace collections, which also utilize genomic approaches. Their use in breeding programs based on genomic selection, and the discovery of beneficial untapped QTL/genes/alleles which could be introgressed into modern varieties by MAS, pyramiding or biotechnological tools, increase the potential for their better deployment and exploitation in breeding for a more sustainable agricultural production, particularly enhancing adaptation and productivity in stress-prone environments to cope with current climate changes.
Collapse
|
37
|
Paddock KJ, Robert CAM, Erb M, Hibbard BE. Western Corn Rootworm, Plant and Microbe Interactions: A Review and Prospects for New Management Tools. INSECTS 2021; 12:171. [PMID: 33671118 PMCID: PMC7922318 DOI: 10.3390/insects12020171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is resistant to four separate classes of traditional insecticides, all Bacillius thuringiensis (Bt) toxins currently registered for commercial use, crop rotation, innate plant resistance factors, and even double-stranded RNA (dsRNA) targeting essential genes via environmental RNA interference (RNAi), which has not been sold commercially to date. Clearly, additional tools are needed as management options. In this review, we discuss the state-of-the-art knowledge about biotic factors influencing herbivore success, including host location and recognition, plant defensive traits, plant-microbe interactions, and herbivore-pathogens/predator interactions. We then translate this knowledge into potential new management tools and improved biological control.
Collapse
Affiliation(s)
- Kyle J. Paddock
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Christelle A. M. Robert
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Bruce E. Hibbard
- Plant Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Columbia, MO 65211, USA
| |
Collapse
|
38
|
Badu-Apraku B, Garcia-Oliveira AL, Petroli CD, Hearne S, Adewale SA, Gedil M. Genetic diversity and population structure of early and extra-early maturing maize germplasm adapted to sub-Saharan Africa. BMC PLANT BIOLOGY 2021; 21:96. [PMID: 33596835 PMCID: PMC7888073 DOI: 10.1186/s12870-021-02829-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 01/07/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Assessment and effective utilization of genetic diversity in breeding programs is crucial for sustainable genetic improvement and rapid adaptation to changing breeding objectives. During the past two decades, the commercialization of the early and extra-early maturing cultivars has contributed to rapid expansion of maize into different agro-ecologies of sub-Saharan Africa (SSA) where maize has become an important component of the agricultural economy and played a vital role in food and nutritional security. The present study aimed at understanding the population structure and genetic variability among 439 early and extra-early maize inbred lines developed from three narrow-based and twenty-seven broad-based populations by the International Iinstitute of Tropical Agriculture Maize Improvement Program (IITA-MIP). These inbreds were genotyped using 9642 DArTseq-based single nucleotide polymorphism (SNP) markers distributed uniformly throughout the maize genome. RESULTS About 40.8% SNP markers were found highly informative and exhibited polymorphic information content (PIC) greater than 0.25. The minor allele frequency and PIC ranged from 0.015 to 0.500 and 0.029 to 0.375, respectively. The STRUCTURE, neighbour-joining phylogenetic tree and principal coordinate analysis (PCoA) grouped the inbred lines into four major classes generally consistent with the selection history, ancestry and kernel colour of the inbreds but indicated a complex pattern of the genetic structure. The pattern of grouping of the lines based on the STRUCTURE analysis was in concordance with the results of the PCoA and suggested greater number of sub-populations (K = 10). Generally, the classification of the inbred lines into heterotic groups based on SNP markers was reasonably reliable and in agreement with defined heterotic groups of previously identified testers based on combining ability studies. CONCLUSIONS Complete understanding of potential heterotic groups would be difficult to portray by depending solely on molecular markers. Therefore, planned crosses involving representative testers from opposing heterotic groups would be required to refine the existing heterotic groups. It is anticipated that the present set of inbreds could contribute new beneficial alleles for population improvement, development of hybrids and lines with potential to strengthen future breeding programs. Results of this study would help breeders in formulating breeding strategies for genetic enhancement and sustainable maize production in SSA.
Collapse
Affiliation(s)
- Baffour Badu-Apraku
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Rd, Ibadan, 200001 Nigeria
| | - Ana Luísa Garcia-Oliveira
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Rd, Ibadan, 200001 Nigeria
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, 56237 Texcoco, Mexico
| | - César Daniel Petroli
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, 56237 Texcoco, Mexico
| | - Sarah Hearne
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, 56237 Texcoco, Mexico
| | - Samuel Adeyemi Adewale
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Rd, Ibadan, 200001 Nigeria
| | - Melaku Gedil
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Rd, Ibadan, 200001 Nigeria
| |
Collapse
|
39
|
Stanley A, Menkir A, Paterne A, Ifie B, Tongoona P, Unachukwu N, Meseka S, Mengesha W, Gedil M. Genetic Diversity and Population Structure of Maize Inbred Lines with Varying Levels of Resistance to Striga Hermonthica Using Agronomic Trait-Based and SNP Markers. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1223. [PMID: 32957613 PMCID: PMC7570130 DOI: 10.3390/plants9091223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022]
Abstract
Striga hermonthica is a serious biotic stress limiting maize production in sub-Saharan Africa. The limited information on the patterns of genetic diversity among maize inbred lines derived from source germplasm with mixed genetic backgrounds limits the development of inbred lines, hybrids, and synthetics with durable resistance to S. hermonthica. This study was conducted to assess the level of genetic diversity in a panel of 150 diverse maize inbred lines using agronomic and molecular data and also to infer the population structure among the inbred lines. Ten Striga-resistance-related traits were used for the phenotypic characterization, and 16,735 high-quality single-nucleotide polymorphisms (SNPs), identified by genotyping-by-sequencing (GBS), were used for molecular diversity. The phenotypic and molecular hierarchical cluster analyses grouped the inbred lines into five clusters, respectively. However, the grouping patterns between the phenotypic and molecular hierarchical cluster analyses were inconsistent due to non-overlapping information between the phenotypic and molecular data. The correlation between the phenotypic and molecular diversity matrices was very low (0.001), which is in agreement with the inconsistencies observed between the clusters formed by the phenotypic and molecular diversity analyses. The joint phenotypic and genotypic diversity matrices grouped the inbred lines into three groups based on their reaction patterns to S. hermonthica, and this was able to exploit a broad estimate of the actual diversity among the inbred lines. The joint analysis shows an invaluable insight for measuring genetic diversity in the evaluated materials. The result indicates that wide genetic variability exists among the inbred lines and that the joint diversity analysis can be utilized to reliably assign the inbred lines into heterotic groups and also to enhance the level of resistance to Striga in new maize varieties.
Collapse
Affiliation(s)
- Adekemi Stanley
- West Africa Centre for Crop Improvement University of Ghana, Legon PMB 30, Ghana; (A.S.); (B.I.); (P.T.)
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria; (A.P.); (N.U.); (S.M.); (W.M.); (M.G.)
| | - Abebe Menkir
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria; (A.P.); (N.U.); (S.M.); (W.M.); (M.G.)
| | - Agre Paterne
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria; (A.P.); (N.U.); (S.M.); (W.M.); (M.G.)
| | - Beatrice Ifie
- West Africa Centre for Crop Improvement University of Ghana, Legon PMB 30, Ghana; (A.S.); (B.I.); (P.T.)
| | - Pangirayi Tongoona
- West Africa Centre for Crop Improvement University of Ghana, Legon PMB 30, Ghana; (A.S.); (B.I.); (P.T.)
| | - Nnanna Unachukwu
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria; (A.P.); (N.U.); (S.M.); (W.M.); (M.G.)
| | - Silvestro Meseka
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria; (A.P.); (N.U.); (S.M.); (W.M.); (M.G.)
| | - Wende Mengesha
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria; (A.P.); (N.U.); (S.M.); (W.M.); (M.G.)
| | - Melaku Gedil
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria; (A.P.); (N.U.); (S.M.); (W.M.); (M.G.)
| |
Collapse
|
40
|
Modern Maize Hybrids Have Lost Volatile Bottom-Up and Top-Down Control of Dalbulus maidis, a Specialist Herbivore. J Chem Ecol 2020; 46:906-915. [PMID: 32715406 DOI: 10.1007/s10886-020-01204-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 01/11/2023]
Abstract
Following damage by herbivores, many plants release volatiles that dissuade future conspecifics from feeding. In many crop plants however, induced volatiles mediating this kind of interactions among plants, herbivores and also their natural enemies have been altered through the process of domestication. The selection of crops for increased yield may have gone at a cost of defense, possibly including defense-related volatiles. Dalbulus maidis (Hemiptera: Cicadellidae), a specialist leafhopper that only feeds on Zea spp., is a vector of Corn Stunt Spiroplasma, a serious maize disease. Here, we compared the volatiles released following D. maidis attack by a maize landrace and two maize hybrids of temperate and tropical background. Also, we performed behavioral assays with the leafhopper contrasting healthy non-attacked maize seedlings versus attacked seedlings. The maize landrace produced more than 6-fold larger quantities of induced volatiles compared to the maize hybrids after herbivory. Corn leafhopper females were able to detect and significantly preferred the odors of healthy seedlings over the attacked ones only in the landrace. They did not discriminate between the attacked and non-attacked hybrids. Additionally, we found that the attraction of the parasitoid wasp Anagrus virlai (Hymenoptera: Mymaridae) to its host was diminished in the tested hybrids. The parasitoid was able to detect the odors of the attacked landrace, however it was unable to discriminate between healthy and attacked maize hybrid plants. These results suggest that those more domesticated germplasms may have lost the ability not only to release volatiles that avoid colonization of future herbivores, but also to attract their natural enemies in a tritrophic system.
Collapse
|
41
|
Gálvez Ranilla L. The Application of Metabolomics for the Study of Cereal Corn ( Zea mays L.). Metabolites 2020; 10:E300. [PMID: 32717792 PMCID: PMC7463750 DOI: 10.3390/metabo10080300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Corn (Zea mays L.) is an important cereal crop indigenous to the Americas, where its genetic biodiversity is still preserved, especially among native populations from Mesoamerica and South America. The use of metabolomics in corn has mainly focused on understanding the potential differences of corn metabolomes under different biotic and abiotic stresses or to evaluate the influence of genetic and environmental factors. The increase of diet-linked non-communicable diseases has increased the interest to optimize the content of bioactive secondary metabolites in current corn breeding programs to produce novel functional foods. This review provides perspectives on the role of metabolomics in the characterization of health-relevant metabolites in corn biodiversity and emphasizes the integration of metabolomics in breeding strategies targeting the enrichment of phenolic bioactive metabolites such as anthocyanins in corn kernels.
Collapse
Affiliation(s)
- Lena Gálvez Ranilla
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, Urb. San Jose s/n, 04013 Arequipa, Peru
| |
Collapse
|
42
|
Natesan S, Singh TS, Duraisamy T, Chandrasekharan N, Chandran S, Adhimoolam K, Muniyandi SJ, Sampathrajan V, Kalipatty Nalliappan G, Muthurajan R, Meitei LJ. Characterization of crtRB1 Gene Polymorphism and β-Carotene Content in Maize Landraces Originated From North Eastern Himalayan Region (NEHR) of India. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Anthocyanin composition and changes during kernel development in purple-pericarp supersweet sweetcorn. Food Chem 2020; 315:126284. [PMID: 32007815 DOI: 10.1016/j.foodchem.2020.126284] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
The current study reports the anthocyanin profile of purple 'supersweet' sweetcorn, recently developed from purple Peruvian maize, and the effect of kernel maturity on anthocyanin accumulation. Twenty anthocyanin compounds, consisting of cyanidin-, peonidin-, and pelargonidin-based glucosides, were identified and quantified in purple- and reddish-purple-pericarp sweetcorn accessions. For the first time, four isomers of cyanidin-3-malonylglucoside, four isomers of pelargonidin-3-malonylglucoside and two to three isomers each of cyanidin-3-dimalonylglucoside, peonidin-3-malonylglucoside and pelargonidin-3-dimalonylglucoside, were identified in the new pigmented sweetcorn. While cyanidin-based glucosides predominated in the purple-pericarp accession, pelargonidin-based glucosides predominated in the reddish-purple accession. Total anthocyanin concentration increased significantly (p < 0.05) during the optimum sweetcorn eating period (23 to 28 DAP) and continued to increase as the kernels further matured (>28 DAP). As kernels continued to mature, pigment coverage across the pericarp progressively increased from a small spot at the stigma end of the kernel, to gradually spreading over the entire kernel.
Collapse
|
44
|
Langner JA, Zanon AJ, Streck NA, Reiniger LRS, Kaufmann MP, Alves AF. Maize: Key agricultural crop in food security and sovereignty in a future with water scarcity. ACTA ACUST UNITED AC 2019. [DOI: 10.1590/1807-1929/agriambi.v23n9p648-654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT The objective in this review was to discuss the importance of maize currently and the crucial role it may play in the future for food production in scenarios of water shortage, as well as the importance of conserving its landrace cultivars, which have a considerable portion of the reserve of genetic variability. Maize plants, when exposed to water deficit, may develop physiological, morphological, biochemical and anatomical adaptation mechanisms. With the aid of genetic improvement, characteristics that impart tolerance are fixed in plants through conventional methods. In this context, ‘Tuxpeño Sequia’ cultivars were developed in Mexico, while in Africa, one of the most important strategies was the development of ‘DT’ (Drought-tolerant) cultivars. In the United States, one of the most important processes was the development of PionerAquamax® hybrids, while in Brazil, it was the development of cultivars with the ‘Maya Latente’ gene. Through genetic transformation, the hybrid ‘MON 87460’ was developed. However, it should be mentioned that, for a cultivar to be well accepted by producers, besides having one or more adaptation characteristics, it must have a high grain yield. Biotechnological tools such as the use of molecular markers, genetic transformation, and modeling through bioinformatics, associated with conventional selection, will be fundamental to guarantee the advancement of water deficit tolerance in maize.
Collapse
|
45
|
Zhang H, Yasmin F, Song BH. Neglected treasures in the wild - legume wild relatives in food security and human health. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:17-26. [PMID: 31085425 PMCID: PMC6817337 DOI: 10.1016/j.pbi.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 05/08/2023]
Abstract
The legume family (Fabaceae) is the third-largest flowering family with over 18 000 species worldwide that are rich in proteins, oils, and nutrients. However, the production potential of legume-derived food cannot meet increasing global demand. Wild legumes represent a large group of wild species adaptive to diverse habitats and harbor rich genetic diversity for the improvement of the agronomic, nutritional, and medicinal values of the domesticated legumes. Accumulating evidence suggests that the genetic variation retained in these under-exploited leguminous wild relatives can be used to improve crop yield, nutrient contents, and resistance/tolerance to environmental stresses via the integration of omics, genetics, and genome-editing technologies.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Farida Yasmin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
46
|
Boakyewaa Adu G, Badu-Apraku B, Akromah R, Garcia-Oliveira AL, Awuku FJ, Gedil M. Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. PLoS One 2019; 14:e0214810. [PMID: 30964890 PMCID: PMC6456193 DOI: 10.1371/journal.pone.0214810] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/20/2019] [Indexed: 11/23/2022] Open
Abstract
Information on genetic diversity and population structure are very important in any breeding programme for the improvement of traits of interest and the development of outstanding products for commercialization. In the present study, we assessed the genetic diversity of 94 early-maturing white and yellow tropical maize inbred lines using single nucleotide polymorphism (SNP) markers. The larger number of SNP markers used in this study allowed a clearer inference of the population structure of the 94 inbred lines. Cluster analysis resolved the inbred lines into different clusters based on their pedigree, selection history and endosperm colour. However, three heterotic groups were revealed by population structure analysis, but additional field evaluation could be more informative to confirm the heterotic groups identified. Nevertheless, wide genetic variability existed among the inbred lines making them unique with the potential to contribute new beneficial alleles to maize breeding programmes in the tropics, especially in the West and Central Africa (WCA) sub-region.
Collapse
Affiliation(s)
| | - Baffour Badu-Apraku
- International Institute of Tropical Agriculture (UK) Limited, Carolyn House, Croydon, United Kignodm
- * E-mail:
| | - Richard Akromah
- Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | - Melaku Gedil
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
47
|
Andorf C, Beavis WD, Hufford M, Smith S, Suza WP, Wang K, Woodhouse M, Yu J, Lübberstedt T. Technological advances in maize breeding: past, present and future. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:817-849. [PMID: 30798332 DOI: 10.1007/s00122-019-03306-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/05/2019] [Indexed: 05/18/2023]
Abstract
Maize has for many decades been both one of the most important crops worldwide and one of the primary genetic model organisms. More recently, maize breeding has been impacted by rapid technological advances in sequencing and genotyping technology, transformation including genome editing, doubled haploid technology, parallelled by progress in data sciences and the development of novel breeding approaches utilizing genomic information. Herein, we report on past, current and future developments relevant for maize breeding with regard to (1) genome analysis, (2) germplasm diversity characterization and utilization, (3) manipulation of genetic diversity by transformation and genome editing, (4) inbred line development and hybrid seed production, (5) understanding and prediction of hybrid performance, (6) breeding methodology and (7) synthesis of opportunities and challenges for future maize breeding.
Collapse
Affiliation(s)
| | - William D Beavis
- Department of Agronomy, Iowa State University, Agronomy Hall, Ames, IA, 50011-1010, USA
| | - Matthew Hufford
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011-1010, USA
| | - Stephen Smith
- Department of Agronomy, Iowa State University, Agronomy Hall, Ames, IA, 50011-1010, USA
| | - Walter P Suza
- Department of Agronomy, Iowa State University, Agronomy Hall, Ames, IA, 50011-1010, USA
| | - Kan Wang
- Department of Agronomy, Iowa State University, Agronomy Hall, Ames, IA, 50011-1010, USA
| | | | - Jianming Yu
- Department of Agronomy, Iowa State University, Agronomy Hall, Ames, IA, 50011-1010, USA
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, Agronomy Hall, Ames, IA, 50011-1010, USA.
| |
Collapse
|
48
|
Morton MJL, Awlia M, Al‐Tamimi N, Saade S, Pailles Y, Negrão S, Tester M. Salt stress under the scalpel - dissecting the genetics of salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:148-163. [PMID: 30548719 PMCID: PMC6850516 DOI: 10.1111/tpj.14189] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 05/08/2023]
Abstract
Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield-related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high-throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants.
Collapse
Affiliation(s)
- Mitchell J. L. Morton
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Mariam Awlia
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Nadia Al‐Tamimi
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Stephanie Saade
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Yveline Pailles
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Sónia Negrão
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Mark Tester
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| |
Collapse
|
49
|
Genomic-based-breeding tools for tropical maize improvement. Genetica 2017; 145:525-539. [PMID: 28875394 DOI: 10.1007/s10709-017-9981-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
Abstract
Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in detail.
Collapse
|
50
|
Aguilar-Rangel MR, Chávez Montes RA, González-Segovia E, Ross-Ibarra J, Simpson JK, Sawers RJ. Allele specific expression analysis identifies regulatory variation associated with stress-related genes in the Mexican highland maize landrace Palomero Toluqueño. PeerJ 2017; 5:e3737. [PMID: 28852597 PMCID: PMC5572453 DOI: 10.7717/peerj.3737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/04/2017] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Gene regulatory variation has been proposed to play an important role in the adaptation of plants to environmental stress. In the central highlands of Mexico, farmer selection has generated a unique group of maize landraces adapted to the challenges of the highland niche. In this study, gene expression in Mexican highland maize and a reference maize breeding line were compared to identify evidence of regulatory variation in stress-related genes. It was hypothesised that local adaptation in Mexican highland maize would be associated with a transcriptional signature observable even under benign conditions. METHODS Allele specific expression analysis was performed using the seedling-leaf transcriptome of an F1 individual generated from the cross between the highland adapted Mexican landrace Palomero Toluqueño and the reference line B73, grown under benign conditions. Results were compared with a published dataset describing the transcriptional response of B73 seedlings to cold, heat, salt and UV treatments. RESULTS A total of 2,386 genes were identified to show allele specific expression. Of these, 277 showed an expression difference between Palomero Toluqueño and B73 alleles under benign conditions that anticipated the response of B73 cold, heat, salt and/or UV treatments, and, as such, were considered to display a prior stress response. Prior stress response candidates included genes associated with plant hormone signaling and a number of transcription factors. Construction of a gene co-expression network revealed further signaling and stress-related genes to be among the potential targets of the transcription factors candidates. DISCUSSION Prior activation of responses may represent the best strategy when stresses are severe but predictable. Expression differences observed here between Palomero Toluqueño and B73 alleles indicate the presence of cis-acting regulatory variation linked to stress-related genes in Palomero Toluqueño. Considered alongside gene annotation and population data, allele specific expression analysis of plants grown under benign conditions provides an attractive strategy to identify functional variation potentially linked to local adaptation.
Collapse
Affiliation(s)
- M. Rocío Aguilar-Rangel
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Ricardo A. Chávez Montes
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
- ABACUS: Laboratorio de Matemáticas Aplicadas y Cómputo de Alto Rendimiento del Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ocoyoacac, Estado de México, Mexico
| | - Eric González-Segovia
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, Center for Population Biology and Genome Center, University of California, Davis, CA, United States of America
| | - June K. Simpson
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Ruairidh J.H. Sawers
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| |
Collapse
|