1
|
Selleghin-Veiga G, Magpali L, Picorelli A, Silva FA, Ramos E, Nery MF. Breathing Air and Living Underwater: Molecular Evolution of Genes Related to Antioxidant Response in Cetaceans and Pinnipeds. J Mol Evol 2024; 92:300-316. [PMID: 38735005 DOI: 10.1007/s00239-024-10170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024]
Abstract
Cetaceans and pinnipeds are lineages of mammals that have independently returned to the aquatic environment, acquiring varying degrees of dependence on it while sharing adaptations for underwater living. Here, we focused on one critical adaptation from both groups, their ability to withstand the ischemia and reperfusion experienced during apnea diving, which can lead to the production of reactive oxygen species (ROS) and subsequent oxidative damage. Previous studies have shown that cetaceans and pinnipeds possess efficient antioxidant enzymes that protect against ROS. In this study, we investigated the molecular evolution of key antioxidant enzyme genes (CAT, GPX3, GSR, PRDX1, PRDX3, and SOD1) and the ROS-producing gene XDH, in cetaceans and pinnipeds lineages. We used the ratio of non-synonymous (dN) to synonymous (dS) substitutions as a measure to identify signatures of adaptive molecular evolution in these genes within and between the two lineages. Additionally, we performed protein modeling and variant impact analyzes to assess the functional consequences of observed mutations. Our findings revealed distinct selective regimes between aquatic and terrestrial mammals in five of the examined genes, including divergences within cetacean and pinniped lineages, between ancestral and recent lineages and between crowns groups. We identified specific sites under positive selection unique to Cetacea and Pinnipedia, with one site showing evidence of convergent evolution in species known for their long and deep-diving capacities. Notably, many sites under adaptive selection exhibited radical changes in amino acid properties, with some being damaging mutations in human variations, but with no apparent detrimental impacts on aquatic mammals. In conclusion, our study provides insights into the adaptive changes that have occurred in the antioxidant systems of aquatic mammals throughout their evolutionary history. We observed both distinctive features within each group of Cetacea and Pinnipedia and instances of convergence. These findings highlight the dynamic nature of the antioxidant system in response to challenges of the aquatic environment and provide a foundation for further investigations into the molecular mechanisms underlying these adaptations.
Collapse
Affiliation(s)
- Giovanna Selleghin-Veiga
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
| | - Letícia Magpali
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Agnello Picorelli
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Felipe A Silva
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Elisa Ramos
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Mariana F Nery
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
2
|
Spadafora C. The epigenetic basis of evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:57-69. [PMID: 36720315 DOI: 10.1016/j.pbiomolbio.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/17/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
An increasing body of data are revealing key roles of epigenetics in evolutionary processes. The scope of this manuscript is to assemble in a coherent frame experimental evidence supporting a role of epigenetic factors and networks, active during embryogenesis, in orchestrating variation-inducing phenomena underlying evolution, seen as a global process. This process unfolds over two crucial levels: i) a flow of RNA-based information - predominantly small regulatory RNAs released from somatic cells exposed to environmental stimuli - taken up by spermatozoa and delivered to oocytes at fertilization and ii) the highly permissive and variation-prone environments offered by zygotes and totipotent early embryos. Totipotent embryos provide a variety of biological tools favouring the emergence of evolutionarily significant phenotypic novelties driven by RNA information. Under this light, neither random genomic mutations, nor the sieving role of natural selection are required, as the sperm-delivered RNA cargo conveys specific information and acts as "phenotypic-inducer" of defined environmentally acquired traits.
Collapse
Affiliation(s)
- Corrado Spadafora
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy.
| |
Collapse
|
3
|
Abstract
Reconstructing the history of biodiversity has been hindered by often-separate analyses of stem and crown groups of the clades in question that are not easily understood within the same unified evolutionary framework. Here, we investigate the evolutionary history of birds by analyzing three supertrees that combine published phylogenies of both stem and crown birds. Our analyses reveal three distinct large-scale increases in the diversification rate across bird evolutionary history. The first increase, which began between 160 and 170 Ma and reached its peak between 130 and 135 Ma, corresponds to an accelerated morphological evolutionary rate associated with the locomotory systems among early stem birds. This radiation resulted in morphospace occupation that is larger and different from their close dinosaurian relatives, demonstrating the occurrence of a radiation among early stem birds. The second increase, which started ∼90 Ma and reached its peak between 65 and 55 Ma, is associated with rapid evolution of the cranial skeleton among early crown birds, driven differently from the first radiation. The third increase, which occurred after ∼40 to 45 Ma, has yet to be supported by quantitative morphological data but gains some support from the fossil record. Our analyses indicate that the bird biodiversity evolution was influenced mainly by long-term climatic changes and also by major paleobiological events such as the Cretaceous-Paleogene (K-Pg) extinction.
Collapse
|
4
|
Skinner MK, Nilsson EE. Role of environmentally induced epigenetic transgenerational inheritance in evolutionary biology: Unified Evolution Theory. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab012. [PMID: 34729214 PMCID: PMC8557805 DOI: 10.1093/eep/dvab012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 05/15/2023]
Abstract
The current evolutionary biology theory primarily involves genetic alterations and random DNA sequence mutations to generate the phenotypic variation required for Darwinian natural selection to act. This neo-Darwinian evolution is termed the Modern Evolution Synthesis and has been the primary paradigm for nearly 100 years. Although environmental factors have a role in neo-Darwinian natural selection, Modern Evolution Synthesis does not consider environment to impact the basic molecular processes involved in evolution. An Extended Evolutionary Synthesis has recently developed that extends the modern synthesis to consider non-genetic processes. Over the past few decades, environmental epigenetics research has been demonstrated to regulate genetic processes and directly generate phenotypic variation independent of genetic sequence alterations. Therefore, the environment can on a molecular level through non-genetic (i.e. epigenetic) mechanisms directly influence phenotypic variation, genetic variation, inheritance and adaptation. This direct action of the environment to alter phenotype that is heritable is a neo-Lamarckian concept that can facilitate neo-Darwinian (i.e. Modern Synthesis) evolution. The integration of genetics, epigenetics, Darwinian theory, Lamarckian concepts, environment, and epigenetic inheritance provides a paradigm shift in evolution theory. The role of environmental-induced epigenetic transgenerational inheritance in evolution is presented to describe a more unified theory of evolutionary biology.
Collapse
Affiliation(s)
- Michael K Skinner
- **Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +1 509-335-1524; E-mail:
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
5
|
Vršanský P, OruŘinský R, Aristov D, Wei DD, Vidlička Ľ, Ren D. Temporary deleterious mass mutations relate to originations of cockroach families. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0096] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
flyDIVaS: A Comparative Genomics Resource for Drosophila Divergence and Selection. G3-GENES GENOMES GENETICS 2016; 6:2355-63. [PMID: 27226167 PMCID: PMC4978890 DOI: 10.1534/g3.116.031138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With arguably the best finished and expertly annotated genome assembly, Drosophila melanogaster is a formidable genetics model to study all aspects of biology. Nearly a decade ago, the 12 Drosophila genomes project expanded D. melanogaster’s breadth as a comparative model through the community-development of an unprecedented genus- and genome-wide comparative resource. However, since its inception, these datasets for evolutionary inference and biological discovery have become increasingly outdated, outmoded, and inaccessible. Here, we provide an updated and upgradable comparative genomics resource of Drosophila divergence and selection, flyDIVaS, based on the latest genomic assemblies, curated FlyBase annotations, and recent OrthoDB orthology calls. flyDIVaS is an online database containing D. melanogaster-centric orthologous gene sets, CDS and protein alignments, divergence statistics (% gaps, dN, dS, dN/dS), and codon-based tests of positive Darwinian selection. Out of 13,920 protein-coding D. melanogaster genes, ∼80% have one aligned ortholog in the closely related species, D. simulans, and ∼50% have 1–1 12-way alignments in the original 12 sequenced species that span over 80 million yr of divergence. Genes and their orthologs can be chosen from four different taxonomic datasets differing in phylogenetic depth and coverage density, and visualized via interactive alignments and phylogenetic trees. Users can also batch download entire comparative datasets. A functional survey finds conserved mitotic and neural genes, highly diverged immune and reproduction-related genes, more conspicuous signals of divergence across tissue-specific genes, and an enrichment of positive selection among highly diverged genes. flyDIVaS will be regularly updated and can be freely accessed at www.flydivas.info. We encourage researchers to regularly use this resource as a tool for biological inference and discovery, and in their classrooms to help train the next generation of biologists to creatively use such genomic big data resources in an integrative manner.
Collapse
|
7
|
Parker HG, Gilbert SF. From caveman companion to medical innovator: genomic insights into the origin and evolution of domestic dogs. ACTA ACUST UNITED AC 2015; 5:239-255. [PMID: 28490917 DOI: 10.2147/agg.s57678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The phenotypic and behavioral diversity of the domestic dog has yet to be matched by any other mammalian species. In their current form, which comprises more than 350 populations known as breeds, there is a size range of two orders of magnitude and morphological features reminiscent of not only different species but also different phylogenetic families. The range of both appearance and behavior found in the dog is the product of millennia of human interference, and though humans created the diversity it remains a point of fascination to both lay and scientific communities. In this review we summarize the current understanding of the history of dog domestication based on molecular data. We will examine the ways that canine genetic and genomic studies have evolved and look at examples of dog genetics in the light of human disease.
Collapse
Affiliation(s)
- Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda MD, 20892 USA
| | - Samuel F Gilbert
- National Human Genome Research Institute, National Institutes of Health, Bethesda MD, 20892 USA
| |
Collapse
|
8
|
Fushan AA, Turanov AA, Lee S, Kim EB, Lobanov AV, Yim SH, Buffenstein R, Lee S, Chang K, Rhee H, Kim J, Yang K, Gladyshev VN. Gene expression defines natural changes in mammalian lifespan. Aging Cell 2015; 14:352-65. [PMID: 25677554 PMCID: PMC4406664 DOI: 10.1111/acel.12283] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2014] [Indexed: 01/09/2023] Open
Abstract
Mammals differ more than 100-fold in maximum lifespan, which can be altered in either direction during evolution, but the molecular basis for natural changes in longevity is not understood. Divergent evolution of mammals also led to extensive changes in gene expression within and between lineages. To understand the relationship between lifespan and variation in gene expression, we carried out RNA-seq-based gene expression analyses of liver, kidney, and brain of 33 diverse species of mammals. Our analysis uncovered parallel evolution of gene expression and lifespan, as well as the associated life-history traits, and identified the processes and pathways involved. These findings provide direct insights into how nature reversibly adjusts lifespan and other traits during adaptive radiation of lineages.
Collapse
Affiliation(s)
- Alexey A. Fushan
- Department of Bioinspired Science Ewha Womans University Seoul 120‐750South Korea
| | - Anton A. Turanov
- Division of Genetics Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115USA
| | - Sang‐Goo Lee
- Department of Bioinspired Science Ewha Womans University Seoul 120‐750South Korea
- Division of Genetics Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115USA
| | - Eun Bae Kim
- Department of Bioinspired Science Ewha Womans University Seoul 120‐750South Korea
- Department of Animal Life Science Kangwon National University Chuncheon 200‐701South Korea
| | - Alexei V. Lobanov
- Division of Genetics Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115USA
| | - Sun Hee Yim
- Division of Genetics Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115USA
| | - Rochelle Buffenstein
- Department of Physiology and The Sam and Ann Barshop Institute for Longevity and Aging Studies University of Texas Health Science Center San Antonio TX 78245USA
| | - Sang‐Rae Lee
- The National Primate Research Center Korea Research Institute of Bioscience and Biotechnology OchangCheongwon Chungbuk 363‐883 South Korea
| | - Kyu‐Tae Chang
- The National Primate Research Center Korea Research Institute of Bioscience and Biotechnology OchangCheongwon Chungbuk 363‐883 South Korea
| | | | - Jong‐So Kim
- Macrogene, Inc. Geumchen‐guSeoul 153‐781South Korea
| | | | - Vadim N. Gladyshev
- Department of Bioinspired Science Ewha Womans University Seoul 120‐750South Korea
- Division of Genetics Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115USA
| |
Collapse
|
9
|
Skinner MK. Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution. Genome Biol Evol 2015; 7:1296-302. [PMID: 25917417 PMCID: PMC4453068 DOI: 10.1093/gbe/evv073] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Environment has a critical role in the natural selection process for Darwinian evolution. The primary molecular component currently considered for neo-Darwinian evolution involves genetic alterations and random mutations that generate the phenotypic variation required for natural selection to act. The vast majority of environmental factors cannot directly alter DNA sequence. Epigenetic mechanisms directly regulate genetic processes and can be dramatically altered by environmental factors. Therefore, environmental epigenetics provides a molecular mechanism to directly alter phenotypic variation generationally. Lamarck proposed in 1802 the concept that environment can directly alter phenotype in a heritable manner. Environmental epigenetics and epigenetic transgenerational inheritance provide molecular mechanisms for this process. Therefore, environment can on a molecular level influence the phenotypic variation directly. The ability of environmental epigenetics to alter phenotypic and genotypic variation directly can significantly impact natural selection. Neo-Lamarckian concept can facilitate neo-Darwinian evolution. A unified theory of evolution is presented to describe the integration of environmental epigenetic and genetic aspects of evolution.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University
| |
Collapse
|
10
|
Čandek K, Kuntner M. DNA barcoding gap: reliable species identification over morphological and geographical scales. Mol Ecol Resour 2014; 15:268-77. [DOI: 10.1111/1755-0998.12304] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/06/2014] [Accepted: 07/16/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Klemen Čandek
- Institute of Biology; Scientific Research Centre of the Slovenian Academy of Sciences and Arts; Novi Trg 2 1000 Ljubljana Slovenia
| | - Matjaž Kuntner
- Institute of Biology; Scientific Research Centre of the Slovenian Academy of Sciences and Arts; Novi Trg 2 1000 Ljubljana Slovenia
- Centre for Behavioural Ecology and Evolution; College of Life Sciences; Hubei University; 368 Youyi Road 430062 Wuhan China
- Department of Entomology; National Museum of Natural History; Smithsonian Institution; PO Box 37012 Washington DC 20013-7012 USA
| |
Collapse
|
11
|
Ponge JF. Disturbances, organisms and ecosystems: a global change perspective. Ecol Evol 2013; 3:1113-24. [PMID: 23610648 PMCID: PMC3631418 DOI: 10.1002/ece3.505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/05/2013] [Accepted: 01/17/2013] [Indexed: 12/29/2022] Open
Abstract
The present text exposes a theory of the role of disturbances in the assemblage and evolution of species within ecosystems, based principally, but not exclusively, on terrestrial ecosystems. Two groups of organisms, doted of contrasted strategies when faced with environmental disturbances, are presented, based on the classical r-K dichotomy, but enriched with more modern concepts from community and evolutionary ecology. Both groups participate in the assembly of known animal, plant, and microbial communities, but with different requirements about environmental fluctuations. The so-called "civilized" organisms are doted with efficient anticipatory mechanisms, allowing them to optimize from an energetic point of view their performances in a predictable environment (stable or fluctuating cyclically at the scale of life expectancy), and they developed advanced specializations in the course of evolutionary time. On the opposite side, the so-called "barbarians" are weakly efficient in a stable environment because they waste energy for foraging, growth, and reproduction, but they are well adapted to unpredictably changing conditions, in particular during major ecological crises. Both groups of organisms succeed or alternate each other in the course of spontaneous or geared successional processes, as well as in the course of evolution. The balance of "barbarians" against "civilized" strategies within communities is predicted to shift in favor of the first type under present-day anthropic pressure, exemplified among others by climate warming, land use change, pollution, and biological invasions.
Collapse
Affiliation(s)
- Jean-François Ponge
- Muséum National d'Histoire Naturelle, CNRS UMR 7179 4 avenue du Petit-Château, Brunoy, 91800, France
| |
Collapse
|