1
|
Banach E, Jaworski T, Urban-Ciećko J. Early synaptic deficits in GSK-3β overexpressing mice. Neurosci Lett 2022; 784:136744. [PMID: 35718239 DOI: 10.1016/j.neulet.2022.136744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
Synaptic dysfunction is the prominent feature of many neuropsychiatric and neurological diseases, in which glycogen synthase kinase 3β (GSK-3β) has been shown to play a role. Overexpression of constitutively active form of GSK-3β (GSK-3β[S9A]) in mice recapitulates the cognitive and structural brain deficits characteristic for manic phase of bipolar disorder (BD). Yet, the mechanisms underlying GSK-3β-induced synaptic dysfunction have not been fully elucidated. The aim of the present study was to dissect the effect of GSK-3β overactivity on synaptic function in adolescent (3-week-old) mice. We found that overactivity of GSK-3β in adolescent transgenic mice leads to an alteration in dendritic spines morphology of granule cells in dentate gyrus (DG) without changes in overall spine density. There was an increase in the number of thin, presumably immature dendritic spines in GSK-3β[S9A] mice. Subsequent electrophysiological analysis showed changes in excitatory synaptic transmission manifested by an increase of inter-event intervals of miniature excitatory postsynaptic currents (mEPSCs) in DG granule cells and an increase in the number of silent (unfunctional) synapses at the perforant path-DG pathway in GSK-3β[S9A] mice. Altogether, our data indicate that GSK-3β overactivity leads to synaptic deficits in adolescent, GSK-3β[S9A] mice. These data might provide potential mechanisms underlying GSK-3β-induced synaptic dysfunction in psychiatric disorders.
Collapse
Affiliation(s)
- Ewa Banach
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Animal Models, Nencki Institute of Experimental Biology PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Tomasz Jaworski
- Laboratory of Animal Models, Nencki Institute of Experimental Biology PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland; Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland
| | - Joanna Urban-Ciećko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
2
|
Zelada D, Barrantes FJ, Henríquez JP. Lithium causes differential effects on postsynaptic stability in normal and denervated neuromuscular synapses. Sci Rep 2021; 11:17285. [PMID: 34446751 PMCID: PMC8390761 DOI: 10.1038/s41598-021-96708-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/06/2021] [Indexed: 11/12/2022] Open
Abstract
Lithium chloride has been widely used as a therapeutic mood stabilizer. Although cumulative evidence suggests that lithium plays modulatory effects on postsynaptic receptors, the underlying mechanism by which lithium regulates synaptic transmission has not been fully elucidated. In this work, by using the advantageous neuromuscular synapse, we evaluated the effect of lithium on the stability of postsynaptic nicotinic acetylcholine receptors (nAChRs) in vivo. We found that in normally innervated neuromuscular synapses, lithium chloride significantly decreased the turnover of nAChRs by reducing their internalization. A similar response was observed in CHO-K1/A5 cells expressing the adult muscle-type nAChRs. Strikingly, in denervated neuromuscular synapses, lithium led to enhanced nAChR turnover and density by increasing the incorporation of new nAChRs. Lithium also potentiated the formation of unstable nAChR clusters in non-synaptic regions of denervated muscle fibres. We found that denervation-dependent re-expression of the foetal nAChR γ-subunit was not altered by lithium. However, while denervation inhibits the distribution of β-catenin within endplates, lithium-treated fibres retain β-catenin staining in specific foci of the synaptic region. Collectively, our data reveal that lithium treatment differentially affects the stability of postsynaptic receptors in normal and denervated neuromuscular synapses in vivo, thus providing novel insights into the regulatory effects of lithium on synaptic organization and extending its potential therapeutic use in conditions affecting the peripheral nervous system.
Collapse
Affiliation(s)
- Diego Zelada
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, CMA Bio-Bio, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Francisco J Barrantes
- Pontificia Universidad Católica Argentina (UCA)-Scientific and Technological Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Juan Pablo Henríquez
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, CMA Bio-Bio, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
3
|
Tatavarty V, Torrado Pacheco A, Groves Kuhnle C, Lin H, Koundinya P, Miska NJ, Hengen KB, Wagner FF, Van Hooser SD, Turrigiano GG. Autism-Associated Shank3 Is Essential for Homeostatic Compensation in Rodent V1. Neuron 2020; 106:769-777.e4. [PMID: 32199104 DOI: 10.1016/j.neuron.2020.02.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Mutations in Shank3 are strongly associated with autism spectrum disorders and neural circuit changes in several brain areas, but the cellular mechanisms that underlie these defects are not understood. Homeostatic forms of plasticity allow central circuits to maintain stable function during experience-dependent development, leading us to ask whether loss of Shank3 might impair homeostatic plasticity and circuit-level compensation to perturbations. We found that Shank3 loss in vitro abolished synaptic scaling and intrinsic homeostatic plasticity, deficits that could be rescued by treatment with lithium. Further, Shank3 knockout severely compromised the in vivo ability of visual cortical circuits to recover from perturbations to sensory drive. Finally, lithium treatment ameliorated a repetitive self-grooming phenotype in Shank3 knockout mice. These findings demonstrate that Shank3 loss severely impairs the ability of central circuits to harness homeostatic mechanisms to compensate for perturbations in drive, which, in turn, may render them more vulnerable to such perturbations.
Collapse
Affiliation(s)
| | | | | | - Heather Lin
- Department of Biology, Brandeis University, Waltham, MA 02493, USA
| | - Priya Koundinya
- Department of Biology, Brandeis University, Waltham, MA 02493, USA
| | | | - Keith B Hengen
- Department of Biology, Brandeis University, Waltham, MA 02493, USA
| | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | | | |
Collapse
|
4
|
Yu S, Lin Z, Xiao Z. [Changes of membrane properties and synaptic stability of rat retinal ganglion cells during postnatal development]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1100-1106. [PMID: 30377110 DOI: 10.12122/j.issn.1673-4254.2018.09.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the changes in the membrane properties and synaptic stability of the rat retinal ganglion cells (RGCs) during postnatal development. METHODS Whole-cell patch-clamp technique was used to record the action potentials (AP) and miniature excitatory postsynaptic currents (mEPSC) of SD rat RGCs at postnatal days 7, 14 and 40. The active and passive membrane properties and the synaptic stability (measured by the amplitude, frequency, rise time and decay time of mEPSC) of the RGCs were analyzed using Patchmaster software. RESULTS Comparison of the RGCs in SD rats across different postnatal ages revealed significant changes in the electrophysiological characteristics of the RGCs during postnatal development. The discharge rate was significantly greater while the AP half-peak width was significantly smaller at postnatal day 15 (P15) than at P7 (P < 0.01), but were both similar between P15 and P40 (P=0.086); in terms of the passive membrane properties, the membrane time constant gradually decreased during the development. The frequency of mEPSCs increased significantly over time during postnatal development (P < 0.01), but was similar between P15 and P40 rats. CONCLUSIONS In SD rats, the membrane properties and synaptic stability of the RGCs undergo alterations following a specific pattern, which highlights a critical period where distinct changes occur in the electrophysiological characteristics of RGCs, followed by gradual stabilization over time. Such changes in the electrophysiological characteristics represent the basic characteristics of RGCs for visual signal processing, and understanding of this mechanism may provide insights into the exact role of the RGC in visual information processing.
Collapse
Affiliation(s)
- Siqi Yu
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhengrong Lin
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Gideons ES, Lin PY, Mahgoub M, Kavalali ET, Monteggia LM. Chronic lithium treatment elicits its antimanic effects via BDNF-TrkB dependent synaptic downscaling. eLife 2017; 6:e25480. [PMID: 28621662 PMCID: PMC5499943 DOI: 10.7554/elife.25480] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022] Open
Abstract
Lithium is widely used as a treatment for Bipolar Disorder although the molecular mechanisms that underlie its therapeutic effects are under debate. In this study, we show brain-derived neurotrophic factor (BDNF) is required for the antimanic-like effects of lithium but not the antidepressant-like effects in mice. We performed whole cell patch clamp recordings of hippocampal neurons to determine the impact of lithium on synaptic transmission that may underlie the behavioral effects. Lithium produced a significant decrease in α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated miniature excitatory postsynaptic current (mEPSC) amplitudes due to postsynaptic homeostatic plasticity that was dependent on BDNF and its receptor tropomyosin receptor kinase B (TrkB). The decrease in AMPAR function was due to reduced surface expression of GluA1 subunits through dynamin-dependent endocytosis. Collectively, these findings demonstrate a requirement for BDNF in the antimanic action of lithium and identify enhanced dynamin-dependent endocytosis of AMPARs as a potential mechanism underlying the therapeutic effects of lithium.
Collapse
Affiliation(s)
- Erinn S Gideons
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Pei-Yi Lin
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Melissa Mahgoub
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Ege T Kavalali
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Lisa M Monteggia
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|