1
|
Bariod L, Fuentes E, Millet M, White J, Jacquiod S, Moreau J, Monceau K. Exposure to pesticides is correlated with gut microbiota alterations in a farmland raptor. ENVIRONMENT INTERNATIONAL 2025; 199:109436. [PMID: 40252553 DOI: 10.1016/j.envint.2025.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/21/2025] [Accepted: 04/03/2025] [Indexed: 04/21/2025]
Abstract
The gut microbiota is crucial for host health and can be impacted by various environmental disruptions, yet the effects of multiple pesticide exposures on farmland organisms' microbiomes remain largely unexplored. We assessed microbiota changes in a wild apex predator exposed to multiple pesticides in agricultural landscapes. Pesticides, including acetochlor and quinoxyfen, which are supposed to be banned, were significantly positively correlated with certain key bacteria from Actinobacteria, Alphaproteobacteria and Gammaproteobacteria classes. Our results light up the potential collateral effect of pesticides on gut bacterial assemblages through unknown mechanisms. These effects could result in dysbiosis and the promotion of potential pathogens and/or the selection of bacteria that might allow the organism to detoxify the organism. Although formal metagenomic analyses would be required soon, these microbial shifts underline the broader ecological consequences of pesticide exposure, emphasising the need for integrated biodiversity conservation and ecosystem management to protect environmental and public health.
Collapse
Affiliation(s)
- Léa Bariod
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France
| | - Elva Fuentes
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France
| | - Maurice Millet
- Université de Strasbourg, CNRS-UMR 7515, ICPEES, 67087 Strasbourg cedex 2, France
| | - Joël White
- Centre de Recherche sur la Biodiversité et l'Environnement, UMR 5300, CNRS-IRD-UT3-INPT, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Samuel Jacquiod
- INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie, 21000 Dijon, France
| | - Jérôme Moreau
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France
| | - Karine Monceau
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France; LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, 79360 Villiers-en-Bois, France.
| |
Collapse
|
2
|
Dong Z, Zhu Y, Che R, Chen T, Liang J, Xia M, Wang F. Unraveling the complexity of organophosphorus pesticides: Ecological risks, biochemical pathways and the promise of machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179206. [PMID: 40154081 DOI: 10.1016/j.scitotenv.2025.179206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Organophosphorus pesticides (OPPs) are widely used in agriculture but pose significant ecological and human health risks due to their persistence and toxicity in the environment. While microbial degradation offers a promising solution, gaps remain in understanding the enzymatic mechanisms, degradation pathways, and ecological impacts of OPP transformation products. This review aims to bridge these gaps by integrating traditional microbial degradation research with emerging machine learning (ML) technologies. We hypothesize that ML can enhance OPP degradation studies by improving the efficiency of enzyme discovery, pathway prediction, and ecological risk assessment. Through a comprehensive analysis of microbial degradation mechanisms, environmental factors, and ML applications, we propose a novel framework that combines biochemical insights with data-driven approaches. Our review highlights the potential of ML to optimize microbial strain screening, predict degradation pathways, and identify key active sites, offering innovative strategies for sustainable pesticide management. By integrating traditional research with cutting-edge ML technologies, this work contributes to the journal's scope by promoting eco-friendly solutions for environmental protection and pesticide pollution control.
Collapse
Affiliation(s)
- Zhongtian Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Institute of process engineering, Chinese Academy of Sciences, Beijing 100089, China
| | - Yining Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Ruijie Che
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Tao Chen
- China Ordnance Equipment Group Automation Research Institute CO., LTD, Mianyang 621000, China
| | - Jie Liang
- China Ordnance Equipment Group Automation Research Institute CO., LTD, Mianyang 621000, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Fenghe Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
3
|
Geng Y, Zha W, Lv J, Jiao W, Zhang Y, Ma X, Wu X, Hua R, Fang L. Efficient and harmless removal of insecticide diazinon via the stepwise combination of biodegradation and photodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116599. [PMID: 38901169 DOI: 10.1016/j.ecoenv.2024.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Diazinon, an organophosphorus insecticide, is predominantly removed through photodegradation and biodegradation in the environment. However, photodegradation can generate diazoxon, a highly toxic oxidation byproduct, while biodegradation is hard to complete mineralize diazinon, showing limitations in both methods. In this study, we provided an efficient strategy for the complete and harmless removal of diazinon by synergistically employing biodegradation and photodegradation. The diazinon-degrading strain X1 was capable of completely degrading 200 μM of diazinon into 2-isopropyl-6-methyl-4-pyrimidinol (IMP) within 6 h without producing the highly toxic diazoxon. IMP was the only intermediate metabolite in biodegradation process, which cannot be further degraded by strain X1. Through RT-qPCR and prokaryotic expression analyses, the hydrolase OpdB was pinpointed as the key enzyme for diazinon degradation in strain X1. Photodegradation was further used to degrade IMP and a pyridazine ring-opening product of IMP was identified via high resolution mass spectrometry. The acute toxicity of this product to aquatic organisms were 123 times and 6630 times lower than that of diazinon and IMP, respectively. The stepwise application of biodegradation and photodegradation was proved to be a successful approach for the remediation of diazinon and its metabolite IMP. This integrated method ensures the harmless and complete elimination of diazinon and IMP within only 6 h. The research provides a theoretical basis for the efficient and harmless remediation of organophosphorus insecticide residuals in the environment.
Collapse
Affiliation(s)
- Yuehan Geng
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, Hefei, Anhui 230036, China; School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Zha
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, Hefei, Anhui 230036, China; School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jingjie Lv
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, Hefei, Anhui 230036, China; School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wenxi Jiao
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunfeng Zhang
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xin Ma
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, Hefei, Anhui 230036, China; School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiangwei Wu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, Hefei, Anhui 230036, China; School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Rimao Hua
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, Hefei, Anhui 230036, China; School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Liancheng Fang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, Hefei, Anhui 230036, China; School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
4
|
Jeon JS, Cho G, Kim S, Riu M, Song J. Actinomycetota, a central constituent microbe during long-term exposure to diazinon, an organophosphorus insecticide. CHEMOSPHERE 2024; 354:141583. [PMID: 38460853 DOI: 10.1016/j.chemosphere.2024.141583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Microbial biodegradation is a primary pesticide remediation pathway. Despite diazinon is one of the most frequently used organophosphate insecticides worldwide, its effect on soil microbial community remains obscure. We hypothesize that diazinon exposure reshapes microbial community, among them increased microbes may play a crucial role in diazinon degradation. To investigate this, we collected soil from an organic farming environment, introduced diazinon, cultivated it in a greenhouse, and then assessed its effects on soil microbiomes at three distinct time points: 20, 40, and 270 days after treatment (DAT). Results from HPLC showed that the level of diazinon was gradually degraded by 98.8% at 270 DAT when compared with day zero, whereas 16S rRNA gene analysis exhibited a significant reduction in the bacterial diversity, especially at the early two time points, indicating that diazinon may exert selection pressure to the bacteria community. Here, the relative abundance of phylum Actinomycetota increased at 20 and 40 DATs. In addition, the bacterial functional gene profile employing PICRUSt2 prediction also revealed that diazinon exposure induced the genomic function related to xenobiotics biodegradation and metabolism in soil, such as CYB5B, hpaC, acrR, and ppkA. To validate if bacterial function is caused by increased relative abundance in diazinon enriched soil, further bacteria isolation resulted in obtaining 25 diazinon degradation strains out of 103 isolates. Notably, more than 70% (18 out of 25) isolates are identified as phylum Actinomycetota, which empirically confirms and correlates microbiome and PICRUSt2 results. In conclusion, this study provides comprehensive information from microbiome analysis to obtaining several bacteria isolates responsible for diazinon degradation, revealing that the phylum Actinomycetota is as a key taxon that facilitates microbial biodegradation in diazinon spoiled soil. This finding may assist in developing a strategy for microbial detoxification of diazinon, such as using an Actinomycetota rich synthetic community (SynCom).
Collapse
Affiliation(s)
- Je-Seung Jeon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju, 55365, Republic of Korea; Industrial Crop Utilization Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709, Republic of Korea
| | - Gyeongjun Cho
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Songhwa Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Myoungjoo Riu
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Jaekyeong Song
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju, 55365, Republic of Korea.
| |
Collapse
|
5
|
Chen H, Yang L, Zhao S, Xu H, Zhang Z. Long-term toxic effects of iron-based metal-organic framework nanopesticides on earthworm-soil microorganism interactions in the soil environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170146. [PMID: 38278247 DOI: 10.1016/j.scitotenv.2024.170146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
With the widespread use of controlled-release nanopesticides in field conditions, the interactions between these nanopesticides and biological systems are complex and highly uncertain. The toxicity of iron-based metal organic frameworks (CF@MIL-101-SL) loaded with chlorfenapyr (CF) to terrestrial invertebrate earthworms in filter paper and soil environments and the potential mechanisms of interactions in the nanopesticide-earthworm-cornfield soil microorganism system were investigated for the first time. The results showed that CF@MIL-101-SL was more poisonous to earthworms in the contact filter paper test than suspension concentrate of CF (CF-SC), and conversely, CF@MIL-101-SL was less poisonous to earthworms in the soil test. In the soil environment, the CF@MIL-101-SL treatment reduced oxidative stress and the inhibition of detoxifying enzymes, and reduced tissue and cellular substructural damage in earthworms compared to the CF-SC treatment. Long-term treatment with CF@MIL-101-SL altered the composition and abundance of microbial communities with degradative functions in the earthworm intestine and soil and affected the soil nitrogen cycle by modulating the composition and abundance of nitrifying and denitrifying bacterial communities in the earthworm intestine and soil, confirming that soil microorganisms play an important role in reducing the toxicity of CF@MIL-101-SL to earthworms. In conclusion, this study provides new insights into the ecological risks of nanopesticides to soil organisms.
Collapse
Affiliation(s)
- Huiya Chen
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Liupeng Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Shiji Zhao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Nematollahi A, Rezaei F, Afsharian Z, Mollakhalili-Meybodi N. Diazinon reduction in food products: a comprehensive review of conventional and emerging processing methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40342-40357. [PMID: 35322357 DOI: 10.1007/s11356-022-19294-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Diazinon is known as one of the most commonly used organophosphorus pesticides which influence different pests through inactivating acetyl choline esterase enzymes. Despite diazinon applications, its toxicity to human health could result in a worldwide concern about its occurrence in foodstuffs. Malfunction of brain is considered as the main disorders induced by long time exposure to diazinon. Due to the degradation of diazinon in high temperatures and its susceptibility to oxidation as well as acidic and basic conditions, it could be degraded through several physical (9-94%) and chemical (19.3-100%) food processing procedures (both household and industrial methods). However, each of these methods has its advantages and disadvantages. Normally, the combination of these methods is more efficient in diazinon reduction. To this end, it is important to apply an effective method for diazinon reduction in the food products without affecting food quality or treating human health. It could be noticed that bioremediation by microorganisms such as probiotics could be a promising new method for diazinon's reduction in several food products.
Collapse
Affiliation(s)
- Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran.
| | - Farahnaz Rezaei
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Afsharian
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Mollakhalili-Meybodi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
7
|
Borthakur D, Rani M, Das K, Shah MP, Sharma BK, Kumar A. Bioremediation: an alternative approach for detoxification of polymers from the contaminated environment. Lett Appl Microbiol 2021; 75:744-758. [PMID: 34825392 DOI: 10.1111/lam.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
The industries and metropolitan wastes produced by anthropogenic activities are of great concern for nature as it causes soil contamination and deteriorate the environment. Plastic utilization is rapidly enhancing globally with passing days that last for a more extended period in the environment due to slow decomposition and natural degradation. Excessive use of polymer has risked the life of both marine, freshwater and terrestrial organisms. Lack of proper waste management and inappropriate disposal leads to environmental threats. Bioremediation processes involve microbes such as fungi, bacteria, etc. which contribute a crucial role in the breakdown of plastics. Extremophiles secrete extremozymes that are functionally active in extreme conditions and are highly crucial for polymer disaggregation in those conditions.
Collapse
Affiliation(s)
- D Borthakur
- Department of Microbiology, Tripura University (A Central University), Agartala, Tripura, India.,Department of Life Sciences, Assam Don Bosco University, Tepesia, Assam, India
| | - M Rani
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - K Das
- Department of Microbiology, Tripura University (A Central University), Agartala, Tripura, India
| | - M P Shah
- Enviro Technology Ltd., Ankleshwar, Gujarat, India
| | - B K Sharma
- Department of Microbiology, Tripura University (A Central University), Agartala, Tripura, India
| | - A Kumar
- Department of Microbiology, Tripura University (A Central University), Agartala, Tripura, India
| |
Collapse
|
8
|
Wu X, Li J, Zhou Z, Lin Z, Pang S, Bhatt P, Mishra S, Chen S. Environmental Occurrence, Toxicity Concerns, and Degradation of Diazinon Using a Microbial System. Front Microbiol 2021; 12:717286. [PMID: 34790174 PMCID: PMC8591295 DOI: 10.3389/fmicb.2021.717286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/08/2021] [Indexed: 12/07/2022] Open
Abstract
Diazinon is an organophosphorus pesticide widely used to control cabbage insects, cotton aphids and underground pests. The continuous application of diazinon in agricultural activities has caused both ecological risk and biological hazards in the environment. Diazinon can be degraded via physical and chemical methods such as photocatalysis, adsorption and advanced oxidation. The microbial degradation of diazinon is found to be more effective than physicochemical methods for its complete clean-up from contaminated soil and water environments. The microbial strains belonging to Ochrobactrum sp., Stenotrophomonas sp., Lactobacillus brevis, Serratia marcescens, Aspergillus niger, Rhodotorula glutinis, and Rhodotorula rubra were found to be very promising for the ecofriendly removal of diazinon. The degradation pathways of diazinon and the fate of several metabolites were investigated. In addition, a variety of diazinon-degrading enzymes, such as hydrolase, acid phosphatase, laccase, cytochrome P450, and flavin monooxygenase were also discovered to play a crucial role in the biodegradation of diazinon. However, many unanswered questions still exist regarding the environmental fate and degradation mechanisms of this pesticide. The catalytic mechanisms responsible for enzymatic degradation remain unexplained, and ecotechnological techniques need to be applied to gain a comprehensive understanding of these issues. Hence, this review article provides in-depth information about the impact and toxicity of diazinon in living systems and discusses the developed ecotechnological remedial methods used for the effective biodegradation of diazinon in a contaminated environment.
Collapse
Affiliation(s)
- Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
9
|
Biodiversity of pesticides degrading microbial communities and their environmental impact. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101883] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Nasrollahi M, Pourbabaei AA, Etesami H, Talebi K. Diazinon degradation by bacterial endophytes in rice plant (Oryzia sativa L.): A possible reason for reducing the efficiency of diazinon in the control of the rice stem-borer. CHEMOSPHERE 2020; 246:125759. [PMID: 31891844 DOI: 10.1016/j.chemosphere.2019.125759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/09/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
It is well known that microorganisms can reduce the effectiveness of organophosphate pesticides after their application. But, little information is available concerning the effect of rice endophytic bacteria on the degradation of diazinon, an organophosphate pesticide used in control of the rice stem-borer, absorbed by the rice plant. Thus, aim of this study was to characterize the endophytic bacterial isolates, isolated from diazinon-treated and non-treated rice plants in paddy fields, in terms of diazinon degradation and to investigate whether potent isolates that degrade diazinon in vitro might have the same effect in the rice plant. The results showed that all endophytic isolates, isolated from both groups of rice plants (diazinon-treated and non-treated rice plants), could grow in mineral salt medium (MSM) supplemented with diazinon (20 mg L-1) as a sole carbon source, and 3.79-58.52% of the initial dose of the insecticide was degraded by the isolates within 14 d of incubation. Phylogenetic analysis based on 16 S rRNA sequencing indicated that the potent isolates (DB26-R and B6-L) clearly belonged to the Bacillus genus. The diazinon concentrations in rice plants co-inoculated with B. altitudinis DB26-R and B. subtilis subsp. Inaquosorum B6-L and single-inoculated with these strains were reduced significantly compared with endophyte-free rice plants. These results provide unequivocal evidence that the rice endophytic bacteria, in addition to in vitro degradation of diazinon, are also involved in the rapid inactivation of diazinon in rice plants treated with diazinon (in vivo degradation of diazinon).
Collapse
Affiliation(s)
- Mina Nasrollahi
- Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Ahmad Ali Pourbabaei
- Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Hassan Etesami
- Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Khalil Talebi
- Department of Plant Protection, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
11
|
Madeira CL, Jog KV, Vanover ET, Brooks MD, Taylor DK, Sierra-Alvarez R, Waidner LA, Spain JC, Krzmarzick MJ, Field JA. Microbial Enrichment Culture Responsible for the Complete Oxidative Biodegradation of 3-Amino-1,2,4-triazol-5-one (ATO), the Reduced Daughter Product of the Insensitive Munitions Compound 3-Nitro-1,2,4-triazol-5-one (NTO). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12648-12656. [PMID: 31553579 DOI: 10.1021/acs.est.9b04065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
3-Nitro-1,2,4-triazol-5-one (NTO) is one of the main ingredients of many insensitive munitions, which are being used as replacements for conventional explosives. As its use becomes widespread, more research is needed to assess its environmental fate. Previous studies have shown that NTO is biologically reduced to 3-amino-1,2,4-triazol-5-one (ATO). However, the final degradation products of ATO are still unknown. We have studied the aerobic degradation of ATO by enrichment cultures derived from the soil. After multiple transfers, ATO degradation was monitored in closed bottles through measurements of inorganic carbon and nitrogen species. The results indicate that the members of the enrichment culture utilize ATO as the sole source of carbon and nitrogen. As ATO was mineralized to CO2, N2, and NH4+, microbial growth was observed in the culture. Co-substrates addition did not increase the ATO degradation rate. Quantitative polymerase chain reaction analysis revealed that the organisms that enriched using ATO as carbon and nitrogen source were Terrimonas spp., Ramlibacter-related spp., Mesorhizobium spp., Hydrogenophaga spp., Ralstonia spp., Pseudomonas spp., Ectothiorhodospiraceae, and Sphingopyxis. This is the first study to report the complete mineralization of ATO by soil microorganisms, expanding our understanding of natural attenuation and bioremediation of the explosive NTO.
Collapse
Affiliation(s)
- Camila L Madeira
- Department of Chemical and Environmental Engineering , University of Arizona , Tucson , Arizona 85721-0011 , United States
| | - Kalyani V Jog
- Department of Chemical and Environmental Engineering , University of Arizona , Tucson , Arizona 85721-0011 , United States
| | - Erica T Vanover
- Department of Chemical and Environmental Engineering , University of Arizona , Tucson , Arizona 85721-0011 , United States
| | - Matthew D Brooks
- School of Civil and Environmental Engineering , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - David K Taylor
- School of Civil and Environmental Engineering , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering , University of Arizona , Tucson , Arizona 85721-0011 , United States
| | - Lisa A Waidner
- Center for Environmental Diagnostics & Bioremediation , University of West Florida , Pensacola , Florida 32514 , United States
| | - Jim C Spain
- School of Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332-0355 , United States
- Center for Environmental Diagnostics & Bioremediation , University of West Florida , Pensacola , Florida 32514 , United States
| | - Mark J Krzmarzick
- School of Civil and Environmental Engineering , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Jim A Field
- Department of Chemical and Environmental Engineering , University of Arizona , Tucson , Arizona 85721-0011 , United States
| |
Collapse
|
12
|
Sherma J, Rabel F. Review of thin layer chromatography in pesticide analysis: 2016-2018. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2018.1557055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Joseph Sherma
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | | |
Collapse
|
13
|
Briceño G, Vergara K, Schalchli H, Palma G, Tortella G, Fuentes MS, Diez MC. Organophosphorus pesticide mixture removal from environmental matrices by a soil Streptomyces mixed culture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21296-21307. [PMID: 28748436 DOI: 10.1007/s11356-017-9790-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
The current study aimed to evaluate the removal of a pesticide mixture composed of the insecticides chlorpyrifos (CP) and diazinon (DZ) from liquid medium, soil and a biobed biomixture by a Streptomyces mixed culture. Liquid medium contaminated with 100 mg L-1 CP plus DZ was inoculated with the Streptomyces mixed culture. Results indicated that microorganisms increased their biomass and that the inoculum was viable. The inoculum was able to remove the pesticide mixture with a removal rate of 0.036 and 0.015 h-1 and a half-life of 19 and 46 h-1 for CP and DZ, respectively. The sterilized soil and biobed biomixture inoculated with the mixed culture showed that Streptomyces was able to colonize the substrates, exhibiting an increase in population determined by quantitative polymerase chain reaction (q-PCR), enzymatic activity dehydrogenase (DHA) and acid phosphatase (APP). In both the soil and biomixture, limited CP removal was observed (6-14%), while DZ exhibited a removal rate of 0.024 and 0.060 day-1 and a half-life of 29 and 11 days, respectively. Removal of the organophosphorus pesticide (OP) mixture composed of CP and DZ from different environmental matrices by Streptomyces spp. is reported here for the first time. The decontamination strategy using a Streptomyces mixed culture could represent a promising alternative to eliminate CP and DZ residues from liquids as well as to eliminate DZ from soil and biobed biomixtures.
Collapse
Affiliation(s)
- Gabriela Briceño
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile.
- Scientific and Technological Bioresource Nucleous (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile.
| | - Karen Vergara
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile
| | - Heidi Schalchli
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile
- Departmento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile
| | - Graciela Palma
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile
- Scientific and Technological Bioresource Nucleous (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile
| | - María Soledad Fuentes
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y PasajeCaseros, 4000, Tucumán, Argentina
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile
- Departmento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
14
|
Ramadass M, Thiagarajan P. Effective pesticide nano formulations and their bacterial degradation. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1757-899x/263/2/022050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Affiliation(s)
- Joseph Sherma
- Department of Chemistry, Lafayette College, Easton, Pennsylvania, USA
| |
Collapse
|