1
|
Wang W, Han Z, Aafreen S, Zivko C, Gololobova O, Wei Z, Cotin G, Felder-Flesc D, Mahairaki V, Witwer KW, Bulte JW, Weiss RG, Liu G. Magnetically Labeled iPSC-Derived Extracellular Vesicles Enable MRI/MPI-Guided Regenerative Therapy for Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.641040. [PMID: 40161706 PMCID: PMC11952340 DOI: 10.1101/2025.03.02.641040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Stem cell-derived extracellular vesicles (EVs) offer a promising cell-free approach for cardiovascular regenerative medicine. In this study, we developed magnetically labeled induced pluripotent stem cell-derived EVs (magneto-iPSC-EVs) encapsulated with superparamagnetic iron oxide (SPIO) nanoparticles for image-guided regenerative treatment of myocardial infarction, in which EVs that can be detected by both magnetic resonance imaging (MRI) and magnetic particle imaging (MPI). iPSC-EVs were isolated, characterized per MISEV2023 guidelines, and loaded with SuperSPIO20 nanoparticles using optimized electroporation conditions (300 V, 2 × 10 ms pulses), achieving a high loading efficiency of 1.77 ng Fe/106 EVs. In vitro results show that magneto-iPSC-EVs can be sensitively detected by MPI and MRI, with a detectability of approximately 107 EVs. In a mouse myocardial ischemia-reperfusion model, intramyocardially injected magneto-iPSC-EVs (2 × 109) were imaged non-invasively by in vivo MPI for 7 days and ex vivo MRI, with the presence of magneto-iPSC-EVs confirmed by Prussian blue staining. Therapeutically, both native and magneto- iPSC-EVs significantly improved cardiac function, with a 37.3% increase in left ventricular ejection fraction and 61.0% reduction in scar size. This study highlights the potential of magneto-iPSC-EVs as a cell-free approach for cardiovascular regenerative medicine, offering both non-invasive imaging capabilities and therapeutic benefits for myocardial repair.
Collapse
Affiliation(s)
- Wenshen Wang
- F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheng Han
- F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, University of Central Oklahoma, Edmond, OK, USA
| | - Safiya Aafreen
- F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cristina Zivko
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Vasiliki Mahairaki
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff W.M. Bulte
- F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert G. Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MS, USA
| | - Guanshu Liu
- F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Wang J, Tang X, Lan P, Liang B, Fang Y, Li H. Potential therapeutic mechanisms of Draconis Resina in cardiovascular diseases-a narrative review. Front Pharmacol 2025; 16:1531873. [PMID: 40115265 PMCID: PMC11922957 DOI: 10.3389/fphar.2025.1531873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
As a traditional Chinese herbal medicine, Draconis Resina (DR) has garnered significant attention due to its efficacy in treating various clinical diseases. Notably, it demonstrates remarkable therapeutic effects in cardiovascular diseases, such as atherosclerosis, coronary heart disease, and myocardial ischemia-reperfusion injury. A comprehensive understanding of the potential therapeutic mechanisms of DR in cardiovascular diseases can positively influence their prevention and treatment. Therefore, through a thorough literature review, this paper summarizes the primary mechanisms of DR in managing cardiovascular diseases, which include the prevention of thrombosis, inhibition of inflammatory responses, alleviation of oxidative stress, enhancement of endothelial function, and mitigation of myocardial fibrosis. There may remain many untapped therapeutic applications of DR that need further exploration. This review aims to give readers a deeper understanding of the DR and offer new perspectives.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
- Department of Science and Education, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Xiusong Tang
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
- Department of Science and Education, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Peng Lan
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
- Department of Science and Education, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Bin Liang
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
- Department of Science and Education, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Yu Fang
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
- Department of Science and Education, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Hongbo Li
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
- Department of Science and Education, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
3
|
Liu W, Zhang Q, Guo S, Wang H. The role of microRNAs regulation of endoplasmic reticulum stress in ischemia-reperfusion injury: A review. Int J Biol Macromol 2024; 283:137566. [PMID: 39542287 DOI: 10.1016/j.ijbiomac.2024.137566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
The endoplasmic reticulum (ER) is an important organelle in eukaryotic cells, responsible for a range of biological functions such as the secretion, modification and folding of proteins, maintaining Ca2+ homeostasis and the synthesis of steroids/lipids, secreted proteins and membrane proteins. When cells are affected by internal or external factors, including abnormal energy metabolism, disrupted Ca2+ balance, altered glycosylation, drug toxicity, and so on, the unfolded or misfolded proteins accumulate in the ER, leading to the unfolded protein response (UPR) and ER stress. The abnormal ER stress has been reported to be involved in various pathological processes. MicroRNAs (miRNAs) are non-coding RNAs with the length of approximately 19-25 nucleotides. They control the expression of multiple genes through posttranscriptional gene silencing in eukaryotes or some viruses. Increasing evidence indicates that miRNAs are involved in various cellular functions and biological processes, such as cell proliferation and differentiation, growth and development, and metabolic homeostasis. Hence, miRNAs participate in multiple pathological processes. Recently, many studies have shown that miRNAs play an important role by regulating ER stress in ischemia-reperfusion (I/R) injury, but the relevant mechanisms are not fully understood. In this review, we reviewed the current understanding of ER stress, as well as the biogenesis and function of miRNAs, and focused on the role of miRNAs regulation of ER stress in I/R injury, with the aim of providing new targets for the treatment of I/R injury.
Collapse
Affiliation(s)
- Wanying Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
4
|
Yang PX, Fan XX, Liu MX, Zhang XZ, Cao L, Wang ZZ, Tian JZ, Zhang YW, Xiao W. Longxuetongluo Capsule alleviate ischemia/reperfusion induced cardiomyocyte apoptosis through modulating oxidative stress and mitochondrial dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155993. [PMID: 39244943 DOI: 10.1016/j.phymed.2024.155993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 07/04/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Chinese dragon's blood, the red resin of Dracaena cochinchinensis (Lour.) S. C. Chen., is widely used to treat cardiovascular and cerebrovascular diseases in China. Longxuetongluo Capsule (LTC) is a total phenolic compound extracted from Chinese dragon's blood, currently used in treating ischemic stroke. Myocardial injury can be aggravated after reperfusion of ischemic myocardium, which is called myocardial ischemia-reperfusion injury (MIRI), and the mechanism of MIRI is complex. However, the exact effect and mechanism of LTC on MIRI are still unclear. We explore the effect of LTC on alleviating MIRI based on mitochondrial dysfunction and oxidative stress. AIM OF THE STUDY To explore the cardioprotective mechanism of LTC against MIRI. MATERIALS AND METHODS A rat MIRI model was constructed through ligation of the left anterior descending coronary artery, and LTC was given continuously for 28 days before surgery. The H9c2 cardiomyocyte injury model was induced by oxygen-glucose deprivation/reperfusion (OGD/R), and LTC was given 24 h before OGD. Myocardial ischemia areas were detected with 2,3,5-triphenyltetrazolium chloride (TTC) staining. Cardiac histopathological changes were detected with hematoxylin-eosin (HE) staining. And biochemical indexes were detected with serum biochemical kit. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining and flow cytometry were used to detect apoptosis. Fluorescent probes were used to observe reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), Ca2+and other indexes. MitoTracker staining and immunofluorescence were used to observe the morphology of mitochondria and translocation of dynamin-related protein 1 (Drp1). Finally, immunohistochemistry and Western blotting were used to examine the expression of proteins related to apoptosis, mitochondrial fission and fusion and oxidative stress. RESULTS LTC could ameliorate cardiac pathological changes, decrease myocardial infarct area and the content or level of relevant serum cardiac enzymes, indicating that LTC could alleviate MIRI. Meanwhile, LTC could inhibit cardiomyocyte apoptosis via regulating apoptosis-related protein expression, and it could restore mitochondrial morphology, maintain ΔΨm, inhibit mitochondrial ROS generation and Ca2+ accumulation, increase the expression of mitochondrial fusion protein 2 (Mfn2), decrease the level of phosphorylation dynamin-related protein 1 (p-Drp1), and regulate ATP synthesis, thereby significantly ameliorating mitochondrial dysfunction. Moreover, LTC significantly reduced the expression of NADPH oxidase 2 (NOX2), NADPH oxidase 4 (NOX4) and neutrophil cytosolic factor 2 (NOXA2/p67phox), and reduced ROS production. CONCLUSION The study demonstrated that LTC could inhibit MIRI induced cardiomyocyte apoptosis by inhibiting ROS generation and mitochondrial dysfunction, and these fundings suggested that LTC can be used to alleviate MIRI, which provides a potential therapeutic approach for future treatment of MIRI.
Collapse
Affiliation(s)
- Pei-Xun Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; Kanion School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue Qixia District, Nanjing 210046, PR China; Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Xiao-Xue Fan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Min-Xuan Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue Qixia District, Nanjing 210046, PR China; Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Xin-Zhuang Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Liang Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Zhen-Zhong Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Jin-Zhou Tian
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China
| | - Yong-Wen Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue Qixia District, Nanjing 210046, PR China.
| | - Wei Xiao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China.
| |
Collapse
|
5
|
Yu Z, Xie S. Loureirin B improves H/R-induced hepatic ischemia-reperfusion injury by downregulating ALOX5 to regulate mitochondrial homeostasis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7561-7571. [PMID: 38662194 DOI: 10.1007/s00210-024-03079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
This study was conceived to explore the role and the mechanism of Loureirin B (LB) in hepatic IRI. The viability of LB-treated AML-12 cells was assessed using CCK-8 assay and inflammatory cytokines were detected using ELISA. The activities of ROS and oxidative stress markers MDA, SOD, and GSH-Px were detected using DCFH-DA and corresponding assay kits. The cell apoptosis and caspase3 activity were estimated with flow cytometry and caspase3 assay kits. The expressions of arachidonate 5-lipoxygenase (ALOX5) and apoptosis- and mitochondrial dynamics-related proteins were detected using western blot. The interaction between LB and ALOX5 was analyzed with molecular docking. The transfection efficacy of oe-ALOX5 was examined with RT-qPCR and western blot. Mitochondrial membrane potential was detected with JC-1 staining and immunofluorescence (IF) assay was employed to estimate mitochondrial fusion and fission. The present work found that LB revived the viability, inhibited inflammatory response, suppressed oxidative stress, repressed the apoptosis, and maintained mitochondrial homeostasis in H/R-induced AML-12 cells, which were all reversed by ALOX5 overexpression. Collectively, LB regulated mitochondrial homeostasis by downregulating ALOX5, thereby improving hepatic IRI.
Collapse
Affiliation(s)
- Zhaolong Yu
- Third Department of Internal Medicine, Yiwu Second People's Hospital, No. 1, Jiangbei Road, Fotang Town, Yiwu, 322000, Zhejiang, China.
| | - Shunying Xie
- Department of Emergency Medicine, Yiwu Second People's Hospital, Yiwu, Zhejiang, China
| |
Collapse
|
6
|
Liu J, Chen H, Li X, Song C, Wang L, Wang D. Micro-Executor of Natural Products in Metabolic Diseases. Molecules 2023; 28:6202. [PMID: 37687031 PMCID: PMC10488769 DOI: 10.3390/molecules28176202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Obesity, diabetes, and cardiovascular diseases are the major chronic metabolic diseases that threaten human health. In order to combat these epidemics, there remains a desperate need for effective, safe, and easily available therapeutic strategies. Recently, the development of natural product research has provided new methods and options for these diseases. Numerous studies have demonstrated that microRNAs (miRNAs) are key regulators of metabolic diseases, and natural products can improve lipid and glucose metabolism disorders and cardiovascular diseases by regulating the expression of miRNAs. In this review, we present the recent advances involving the associations between miRNAs and natural products and the current evidence showing the positive effects of miRNAs for natural product treatment in metabolic diseases. We also encourage further research to address the relationship between miRNAs and natural products under physiological and pathological conditions, thus leading to stronger support for drug development from natural products in the future.
Collapse
Affiliation(s)
- Jinxin Liu
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (J.L.); (C.S.)
| | - Huanwen Chen
- Center for Agricultural and Rural Development, Zhangdian District, Zibo 255000, China;
| | - Xiaoli Li
- Zibo Digital Agriculture and Rural Development Center, Zibo 255000, China;
| | - Chunmei Song
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (J.L.); (C.S.)
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Deguo Wang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (J.L.); (C.S.)
- Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| |
Collapse
|
7
|
Lin S, Long H, Hou L, Zhang M, Ting J, Lin H, Zheng P, Lei W, Yin K, Zhao G. Crosstalk between endoplasmic reticulum stress and non-coding RNAs in cardiovascular diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1767. [PMID: 36420580 DOI: 10.1002/wrna.1767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 07/20/2023]
Abstract
Cells are exposed to various pathological stimulus within the cardiovascular system that challenge cells to adapt and survive. Several of these pathological stimulus alter the normal function of the endoplasmic reticulum (ER), leading to the accumulation of unfolded and misfolded proteins, thus triggering the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. Downstream components of the UPR regulate transcription and translation reprogramming to ensure selective gene expression in response to pathological stimulus, including the expression of non-coding RNAs (ncRNAs). The ncRNAs play crucial roles in regulating transcription and translation, and their aberrant expression is associated with the development of cardiovascular disease (CVD). Notably, ncRNAs and ER stress can modulate each other and synergistically affect the development of CVD. Therefore, studying the interaction between ER stress and ncRNAs is necessary for effective prevention and treatment of CVD. In this review, we discuss the UPR signaling pathway and ncRNAs followed by the interplay regulation of ER stress and ncRNAs in CVD, which provides further insights into the understanding of the pathogenesis of CVD and therapeutic strategies. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Shuyun Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Haijiao Long
- Xiangya Hospital, Central South University, Changsha, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ming Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Jiang Ting
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Haiyue Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Pan Zheng
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Weixing Lei
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
8
|
Fan M, Zhang J, Zeng L, Wang D, Chen J, Xi X, Long J, Huang J, Li X. Non-coding RNA mediates endoplasmic reticulum stress-induced apoptosis in heart disease. Heliyon 2023; 9:e16246. [PMID: 37251826 PMCID: PMC10209419 DOI: 10.1016/j.heliyon.2023.e16246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Apoptosis is a complex and highly self-regulating form of cell death, which is an important cause of the continuous decline in ventricular function and is widely involved in the occurrence and development of heart failure, myocardial infarction, and myocarditis. Endoplasmic reticulum stress plays a crucial role in apoptosis-inducing. Accumulation of misfolded or unfolded proteins causes cells to undergo a stress response called unfolded protein response (UPR). UPR initially has a cardioprotective effect. Nevertheless, prolonged and severe ER stress will lead up to apoptosis of stressed cells. Non-coding RNA is a type of RNA that does not code proteins. An ever-increasing number of studies have shown that non-coding RNAs are involved in regulating endoplasmic reticulum stress-induced cardiomyocyte injury and apoptosis. In this study, the effects of miRNA and LncRNA on endoplasmic reticulum stress in various heart diseases were mainly discussed to clarify their protective effects and potential therapeutic strategies for apoptosis.
Collapse
Affiliation(s)
- Mingyuan Fan
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Zhang
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lei Zeng
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Danpeng Wang
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jiao Chen
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaorong Xi
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Long
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jinzhu Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xueping Li
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
9
|
Zhang J, Hu Y, Wang H, Hou J, Xiao W, Wen X, Wang T, Long P, Jiang H, Wang Z, Liu H, Chen X. Advances in research on the protective mechanisms of traditional Chinese medicine (TCM) in myocardial ischaemia-reperfusion injury. PHARMACEUTICAL BIOLOGY 2022; 60:931-948. [PMID: 35587352 PMCID: PMC9132412 DOI: 10.1080/13880209.2022.2063342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Developing effective drugs to treat myocardial ischaemia-reperfusion (MI/R) injury is imperative. Traditional Chinese medicines (TCMs) have had considerable success in the treatment of cardiovascular diseases. Elucidating the mechanisms by which TCMs improve MI/R injury can supplement the literature on MI/R prevention and treatment. OBJECTIVE To summarise TCMs and their main protective mechanisms against MI/R injury reported over the past 40 years. METHODS Relevant literature published between 1980 and 2020 in Chinese and English was retrieved from the Web of Science, PubMed, SpringerLink, PubMed Central, Scopus, and Chinese National Knowledge Infrastructure (CNKI) databases. Search terms included 'medicinal plants', 'myocardial ischaemia reperfusion injury', 'Chinese medicine prescriptions', 'mechanisms', 'prevention', 'treatment' and 'protection'. For inclusion in the analysis, medicinal plants had to be searchable in the China Medical Information Platform and Plant Database. RESULTS We found 71 medicinal species (from 40 families) that have been used to prevent MI/R injury, of which Compositae species (8 species) and Leguminosae species (7 species) made up the majority. Most of the effects associated with these plants are described as antioxidant and anti-inflammatory. Furthermore, we summarised 18 kinds of Chinese compound prescriptions, including the compound Danshen tablet and Baoxin pill, which mainly reduce oxidative stress and regulate mitochondrial energy metabolism. DISCUSSION AND CONCLUSIONS We summarised TCMs that protect against MI/R injury and their pharmacological mechanisms. This in-depth explanation of the roles of TCMs in MI/R injury protection provides a theoretical basis for the research and development of TCM-based treatment drugs.
Collapse
Affiliation(s)
- Jiexin Zhang
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, China
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yonghe Hu
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Han Wang
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, China
| | - Jun Hou
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Wenjing Xiao
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xudong Wen
- Department of Gastroenterology, The First People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Tingting Wang
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Pan Long
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Hezhong Jiang
- Faculty of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhanhao Wang
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, China
| | - Huawei Liu
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, China
| | - Xin Chen
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Yuan ZL, Zhang ZX, Mo YZ, Li DL, Xie L, Chen MH. Inhibition of extracellular signal-regulated kinase downregulates endoplasmic reticulum stress-induced apoptosis and decreases brain injury in a cardiac arrest rat model. Physiol Res 2022; 71:413-423. [PMID: 35616042 PMCID: PMC9470089 DOI: 10.33549/physiolres.934882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is the predominant cause of neurological disability after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). The endoplasmic reticulum stress (ERs)-induced apoptosis plays an important role in neuronal survival/death in CIRI. Our previous studies reported that the extracellular signal-regulated kinase (ERK) inhibitor, PD98059, alleviates CIRI after CA/CPR. Whether ERs-induced apoptosis is involved in the neuroprotection of PD98059 remains unknown. This study aims to investigate the effects of ERK inhibition by PD98059 on ERs-induced apoptosis after CIRI in the CA/CPR rat model. The baseline characteristics of male adult Sprague-Dawley (SD) rats in all groups were evaluated before CA/CPR. The SD rats that survived from CA/CPR were randomly divided into 3 groups (n=12/group): normal saline group (1 ml/kg), dimethylsulfoxide (DMSO, the solvent of PD98059, 1 ml/kg) group, PD98059 group (0.3 mg/kg). Another 12 SD rats were randomly selected as the Sham group. Twenty-four hours after resuscitation, neural injury was assessed by survival rate, neurological deficit scores (NDS) and Nissl staining; apoptosis of brain cells was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining; mRNA expression and protein levels of ERs-related protein BIP, PERK, ATF4 and CHOP were checked with RT-PCR and Western Blot. The results showed that there were no significant differences in baseline characteristics before CA/CPR among all groups. PD98059 significantly improved survival rate and NDS, increased the Nissl bodies in neurons, reduced apoptosis, downregulated the mRNA transcription and expression levels of BIP, PERK, ATF4 and CHOP at 24 h after CA/CPR. Our results demonstrate that inhibition of ERK by PD98059 alleviates ERs-induced apoptosis via BIP-PERK-ATF4-CHOP signaling pathway and mitigates CIRI in the CA/CPR rat model.
Collapse
Affiliation(s)
- Z-L Yuan
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China; Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi People's Republic of China. ; Department of Physiology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
11
|
Loureirin B Alleviates Myocardial Ischemia/Reperfusion Injury via Inhibiting PAI-1/TGF- β1/Smad Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9128210. [PMID: 35535157 PMCID: PMC9078770 DOI: 10.1155/2022/9128210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury is a common clinical problem after myocardial infarction without effective therapy. Loureirin B (LrB) is a kind of flavonoid with anti-inflammatory and antifibrotic activities. However, the effect of LrB on MI/R and its underlying mechanism remains elusive. In the present study, a mouse model of MI/R was established by coronary artery occlusion. Administration of LrB (0.5 mg/kg or 1 mg/kg) for 4 weeks effectively improved left ventricular (LV) function and reduced myocardial infarction in MI/R mice. MI/R-induced expression of IL-6, TNF-α, and IL-1β in the hearts was reduced by LrB treatment. Histological analysis showed that LrB attenuated myocardial collagen deposition. LrB downregulated fibronectin, collagen I, collagen III, and α-SMA expression. Notably, LrB inhibited the expression of profibrotic plasminogen activator inhibitor-1 (PAI-1), transforming growth factor (TGF)-β1, TGF-β1R, and p-Smad2/3. Consistently, LrB inhibited the activation of TGF-β1/Smad signaling pathway and the expression of fibrosis-related proteins in angiotensin (Ang) II-treated cardiac fibroblasts (CFs). Overexpression of PAI-1 abolished the effects of LrB on Ang II-treated CFs, suggesting that LrB may function through regulating PAI-1. These results indicated that LrB may alleviate MI/R-induced myocardial fibrosis by inhibiting PAI-1/TGF-β1/Smad signaling pathway. Thus, LrB may be a potential drug in the treatment of MI/R injury.
Collapse
|
12
|
Liu Y, Zhao X, Yao R, Li C, Zhang Z, Xu Y, Wei JH. Dragon's Blood from Dracaena Worldwide: Species, Traditional Uses, Phytochemistry and Pharmacology. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1315-1367. [PMID: 34247562 DOI: 10.1142/s0192415x21500634] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dragon's blood (DB) refers mainly to the crimson resin of many Dracaena spp. DB has been used by different traditional medicine systems worldwide, including Arabic medicine, African medicine, traditional Chinese medicine, Thai medicine, etc. DB are mainly used to heal wounds, kill pain, stop bleeding, and cure various diseases such as diarrhea, dysentery and ulcers for over 1000 years. 11 Dracaena spp. and 3 subspecies are reported to be able to produce red resin. However, the resources are extremely deficient. Several Dracaena spp. are in threatened status. Over 300 compounds have been isolated from Dracaena spp., mainly including flavonoids, steroids, and phenolics. DB exhibits anti-inflammatory, analgesic, antithrombotic, anti-oxidant, antimicrobial, antidiabetic, and anticancer properties, which explain its wound healing effects, preventive effects on cardiovascular and cerebrovascular diseases, dual-directional regulation of blood flow, neuroprotection and radioprotective effects. No apparent side effects or toxicity have been reported. DB are restricted from being exploited due to limited resources and unclear resin formation mechanism. It is necessary to expand the cultivation of Dracaena spp. and fully understand the mechanism underlying the resin formation process to develop an effective induction method for the sustainable utilization of DB.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China
| | - Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State, Administration of Traditional Chinese Medicine for Agarwood, Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Haikou 570311, P. R. China
| | - Ruyu Yao
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China
| | - Chuangjun Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, P. R. China
| | - Zhonglian Zhang
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, P. R. China
| | - Yanhong Xu
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China.,Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State, Administration of Traditional Chinese Medicine for Agarwood, Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Haikou 570311, P. R. China
| |
Collapse
|
13
|
Zhang J, Zhang T, Zhang W, Zou C, Zhang Q, Ma X, Zhu Y. Circular RNA-DENND4C in H9c2 cells relieves OGD/R-induced injury by down regulation of microRNA-320. Cell Cycle 2020; 19:3074-3085. [PMID: 33090893 DOI: 10.1080/15384101.2020.1831253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Ischemic heart disease (IHD) is one of the most deadly diseases worldwide. To detect the regulatory mechanism, the circular RNA (circRNA)-differentially expressed in normal cells and neoplasia domain containing 4 C (DENND4C) was explored in the H9c2 cells. The circRNA-DENND4C overexpressing plasmid, si-circRNA-DENND4C and miR-320 mimic were transfected into the H9c2 cells and treated with OGD/R stimulation. We took CCK-8 method, Annexin V-FITC/PI-flow cytometer to search for viability and apoptotic ability. With the help of qRT-PCR and western blot, the expression of circRNA-DENND4C and miR-320, as well as the Bax, Cleaved PARP/caspase 3 and signal proteins were separately determined. Regulation of circRNA-DENND4C and miR-320 was confirmed by dual-luciferase reporter assay. OGD/R induced suppression of cell viability, but enhancement of apoptosis and block of ERK and mTOR pathways. Moreover, circRNA-DENND4C was up-regulated after OGD/R stimulation and augmented OGD/R-stimulated damage while circRNA-DENND4C silencing displayed opposite influences. miR-320 was negatively controlled and targeted by the circRNA-DENND4C.The overexpressed miR-320 impeded the effects of circRNA-DENND4C. Besides, circRNA-DENND4C relieved the suppression of ERK and mTOR pathways caused by OGD/R stimulation, and all promoting impacts of circRNA-DENND4C were reversed by the miR-320 mimic. Overexpressed circRNA-DENND4C in H9c2 cells attenuated OGD/R-induced injuries by the down-regulation of miR-320 through the ERK and mTOR activation.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Tao Zhang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Wenlong Zhang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Chengwei Zou
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Qian Zhang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Xiaochun Ma
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Yanhui Zhu
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University , Jinan, China
| |
Collapse
|
14
|
Szczepankiewicz D, Langwiński W, Kołodziejski P, Pruszyńska-Oszmałek E, Sassek M, Nowakowska J, Chmurzyńska A, Nowak KW, Szczepankiewicz A. Allergic Inflammation Alters microRNA Expression Profile in Adipose Tissue in the Rat. Genes (Basel) 2020; 11:genes11091034. [PMID: 32887419 PMCID: PMC7564923 DOI: 10.3390/genes11091034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/28/2023] Open
Abstract
Adipose tissue is a major source of circulating exosomal microRNAs (miRNAs) that are modulators of the immune response in various types of tissues and organs, including airways. Still, no evidence exists if allergic airway inflammation may affect fat tissue inflammation via alterations in the miRNA expression profile. Therefore, we investigated the miRNA expression profile in the adipose tissue upon induced allergic inflammation in the airways in the rat. Brown Norway rats were chronically sensitized to house dust mite extract for seven weeks. Body composition was performed using MiniSpec Plus. The eosinophil count and the total IgE level were determined to confirm the induction of allergic inflammation. MiRNA expression profiling was done using the next-generation sequencing with validation by qPCR. We found that allergic airway inflammation significantly increased fat in adipose tissue, glucose concentration, and the gene expression of adipose tissue-derived proinflammatory peptides (leptin, TNFα). In miRNA-seq analysis, we showed significant differences in the expression of 36 mature miRNAs, three precursors, and two miRNA families in adipose tissue of allergic rats. Two miRNAs—miRNA-151-5p and miRNA-423-3p—showed significantly increased expression in qPCR in adipose tissue and lungs of sensitized animals. Allergic airway inflammation affects fat tissue and alters miRNA expression profile in adipose tissue in the rat.
Collapse
Affiliation(s)
- Dawid Szczepankiewicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (D.S.); (P.K.); (E.P.-O.); (M.S.); (K.W.N.)
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (W.L.); (J.N.)
| | - Paweł Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (D.S.); (P.K.); (E.P.-O.); (M.S.); (K.W.N.)
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (D.S.); (P.K.); (E.P.-O.); (M.S.); (K.W.N.)
| | - Maciej Sassek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (D.S.); (P.K.); (E.P.-O.); (M.S.); (K.W.N.)
| | - Joanna Nowakowska
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (W.L.); (J.N.)
| | - Agata Chmurzyńska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, 60-624 Poznań, Poland;
| | - Krzysztof W. Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (D.S.); (P.K.); (E.P.-O.); (M.S.); (K.W.N.)
| | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (W.L.); (J.N.)
- Correspondence: ; Tel.: +48-61-88547643; Fax: +48-618547663
| |
Collapse
|
15
|
Ghrelin promotes the osteogenic differentiation of rMSCs via miR-206 and the ERK1/2 pathway. Cytotechnology 2020; 72:707-713. [PMID: 32700168 DOI: 10.1007/s10616-020-00413-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) can differentiate into chondroblasts, adipocytes, or osteoblasts under appropriate stimulation. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor (GHSR), stimulates growth hormone (GH) secretion and exerts both orexigenic and adipogenic effects. The ERK1/2 signaling pathway is known to trigger osteogenic differentiation of rabbit bone marrow-derived mesenchymal stromal cells. In the present study, the function of miR-206 in the ghrelin-mediated osteogenic differentiation of rabbit bone marrow-derived mesenchymal stromal cells (rMSCs) was explored. METHODS The expression of miR-206 was detected by qPCR, and phosphorylated ERK1/2 and the protein expression levels of ALP, RUNX2, and Osterix were assessed by western blotting. RESULTS Ghrelin inhibited the expression of miR-206 to promote the osteogenic differentiation of rMSCs. Moreover, ghrelin increased the phosphorylation of ERK1/2, while overexpression of miR-206 suppressed ERK1/2 phosphorylation, indicating that miR-206 can regulate the ERK1/2 pathway. Further, inhibition of ERK1/2 had no influence on miR-206 expression; however, the phosphorylation of ERK1/2 was decreased, and the protein expression levels of ALP, RUNX2, and Osterix were downregulated. CONCLUSIONS Ghrelin promotes the osteogenic differentiation of rMSCs via miR-206 and the ERK1/2 pathway.
Collapse
|
16
|
Wang X, Dong Y, Fang T, Wang X, Chen L, Zheng C, Kang Y, Jiang L, You X, Gai S, Wang Z, Cao H. Circulating MicroRNA-423-3p Improves the Prediction of Coronary Artery Disease in a General Population - Six-Year Follow-up Results From the China-Cardiovascular Disease Study. Circ J 2020; 84:1155-1162. [PMID: 32404537 DOI: 10.1253/circj.cj-19-1181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Circulating microRNAs (miRNA) are potential prognostic biomarkers for cardiovascular disease. We aimed to identify serum miRNA as an effective predictor for coronary artery disease (CAD) events in a general population cohort. METHODS AND RESULTS Serum miRNAs associated with CAD were determined by small RNA sequencing and quantitative RT-PCR. Further, the predictive ability of identified serum miRNAs was measured in a general population of 2,812 people. As a main outcome measure, CAD events were collected for 6 years and included acute myocardial infarction and subsequent myocardial infarction. Out of the 48 miRNA candidates, 5 miRNAs (miR-10a-5p, miR-126-3p, miR-210-3p, miR-423-3p and miR-92a-3p) showed better reliability and repeatability in serum. Then, the association of serum levels of the 5 miRNAs with CAD was validated. Furthermore, miR-10a-5p and miR-423-3p, which showed better performance, were tested in the large cohort, with a median follow up of 6.0 years. In multivariable Cox regression analysis, only miR-423-3p (P for trend<0.001) was able to precisely predict CAD events. Moreover, the addition of circulating miR-423-3p with the traditional risk factors together markedly improved the various model performance measures, including the area under the operating characteristics curve (0.782 vs. 0.806), Akaike Information Criterion (965.845 vs. 943.113) and net reclassification improvement (19.18%). CONCLUSIONS Circulating miR-423-3p can improve the prediction of primary CAD outcomes on the basis of a traditional risk factor model in general population.
Collapse
Affiliation(s)
- Xin Wang
- Division of Prevention Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Chaoyang Hospital, Capital Medical University
| | - Tian Fang
- Institute of Molecular Medicine, Peking University
| | - Xiaoxia Wang
- Institute of Molecular Medicine, Peking University
| | - Lu Chen
- Division of Prevention Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences
| | - Congyi Zheng
- Division of Prevention Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences
| | - Yuting Kang
- Division of Prevention Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences
| | - Linlin Jiang
- Division of Prevention Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences
| | - Xin You
- Department of Laboratory Medicine, The Affiliated Hospital of Yanbian University
| | - Shujie Gai
- State Key of Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Pecking Union Medical College
| | - Zengwu Wang
- Division of Prevention Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences
| | - Huiqing Cao
- Institute of Molecular Medicine, Peking University
| |
Collapse
|