1
|
Meresa BK, Matthys J, Kyndt T. Biochemical Defence of Plants against Parasitic Nematodes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2813. [PMID: 39409684 PMCID: PMC11479011 DOI: 10.3390/plants13192813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
Plant parasitic nematodes (PPNs), such as Meloidogyne spp., Heterodera spp. and Pratylenchus spp., are obligate parasites on a wide range of crops, causing significant agricultural production losses worldwide. These PPNs mainly feed on and within roots, impairing both the below-ground and the above-ground parts, resulting in reduced plant performance. Plants have developed a multi-component defence mechanism against diverse pathogens, including PPNs. Several natural molecules, ranging from cell wall components to secondary metabolites, have been found to protect plants from PPN attack by conferring nematode-specific resistance. Recent advances in omics analytical tools have encouraged researchers to shed light on nematode detection and the biochemical defence mechanisms of plants during nematode infection. Here, we discuss the recent progress on revealing the nematode-associated molecular patterns (NAMPs) and their receptors in plants. The biochemical defence responses of plants, comprising cell wall reinforcement; reactive oxygen species burst; receptor-like cytoplasmic kinases; mitogen-activated protein kinases; antioxidant activities; phytohormone biosynthesis and signalling; transcription factor activation; and the production of anti-PPN phytochemicals are also described. Finally, we also examine the role of epigenetics in regulating the transcriptional response to nematode attack. Understanding the plant defence mechanism against PPN attack is of paramount importance in developing new, effective and sustainable control strategies.
Collapse
Affiliation(s)
- Birhanu Kahsay Meresa
- Biotechnology Department, Mekelle University, Mekelle P.O. Box 231, Ethiopia;
- Biotechnology Department, Ghent University, B-9000 Ghent, Belgium;
| | - Jasper Matthys
- Biotechnology Department, Ghent University, B-9000 Ghent, Belgium;
| | - Tina Kyndt
- Biotechnology Department, Ghent University, B-9000 Ghent, Belgium;
| |
Collapse
|
2
|
Villalba-Bermell P, Marquez-Molins J, Gomez G. A multispecies study reveals the diversity and potential regulatory role of long noncoding RNAs in cucurbits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:799-817. [PMID: 39254680 DOI: 10.1111/tpj.17013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024]
Abstract
Plant long noncoding RNAs (lncRNAs) exhibit features such as tissue-specific expression, spatiotemporal regulation, and stress responsiveness. Although diverse studies support the regulatory role of lncRNAs in model plants, our knowledge about lncRNAs in crops is limited. We employ a custom pipeline on a dataset of over 1000 RNA-seq samples across nine representative species of the family Cucurbitaceae to predict 91 209 nonredundant lncRNAs. The lncRNAs were characterized according to three confidence levels and classified by their genomic context into intergenic, natural antisense, intronic, and sense-overlapping. Compared with protein-coding genes, lncRNAs were, on average, expressed at low levels and displayed significantly higher specificity when considering tissue, developmental stages, and stress responsiveness. The evolutionary analysis indicates higher positional conservation than sequence conservation, probably linked to the conserved modular motifs within syntenic lncRNAs. Moreover, a positive correlation between the expression of intergenic/natural antisense lncRNAs and their closest/parental gene was observed. For those intergenic, the correlation decreases with the distance to the neighboring gene, supporting that their potential cis-regulatory effect is within a short-range. Furthermore, the analysis of developmental studies showed that a conserved NAT-lncRNA family is differentially expressed in a coordinated way with their cognate sense protein-coding genes. These genes code for proteins associated with phloem development, thus providing insights about the potential involvement of some of the identified lncRNAs in a developmental process. We expect that this extensive inventory will constitute a valuable resource for further research lines focused on elucidating the regulatory mechanisms mediated by lncRNAs in cucurbits.
Collapse
Affiliation(s)
- Pascual Villalba-Bermell
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980, Paterna, Spain
| | - Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980, Paterna, Spain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980, Paterna, Spain
| |
Collapse
|
3
|
Sahu S, Rao AR, Saxena S, Gupta P, Gaikwad K. Systematic profiling and analysis of growth and development responsive DE-lncRNAs in cluster bean (Cyamopsis tetragonoloba). Int J Biol Macromol 2024; 280:135821. [PMID: 39306152 DOI: 10.1016/j.ijbiomac.2024.135821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) play crucial role in regulating genes involved in various processes including growth & development, flowering, and stress response in plants. The study aims to identify and characterize tissue-specific, growth & development and floral responsive differentially expressed lncRNAs (DE-lncRNAs) in cluster bean from a high-throughput RNA sequencing data. We have identified 3309 DE-lncRNAs, with an average length of 818 bp. Merely, around 4 % of DE-lncRNAs across the tissues were found to be conserved as rate of evolution of lncRNAs is high. Among the identified DE-lncRNAs, 204 were common in leaf vs. shoot, leaf vs. flower and flower vs. shoot. A total of 60 DE-lncRNAs targeted 10 protein-coding genes involved in flower development and initiation processes. We investigated 179 tissue-specific DE-lncRNAs based on tissue specificity index. Three DE-lncRNAs: Cb_lnc_0820, Cb_lnc_0430, Cb_lnc_0260 and their target genes show their involvement in floral development and stress mechanisms, which were validated by Quantitative real-time PCR (qRT-PCR). The identified DE-lncRNAs were expressed higher in flower bud than in leaf and similar expression pattern was observed in both RNA-seq data and qRT-PCR analyses. Notably, 362 DE-lncRNAs were predicted as eTM-lncRNAs with the participation of 84 miRNAs. Whereas 46 DE-lncRNAs were predicted to possess the internal ribosomal entry sites (IRES) and can encode for small peptides. The regulatory networks established between DE-lncRNAs, mRNAs and miRNAs have provided an insight into their association with plant growth & development, flowering, and stress mechanisms. Comprehensively, the characterization of DE-lncRNAs in various tissues of cluster bean shed a light on interactions among lncRNAs, miRNAs and mRNAs and help understand their involvement in growth & development and floral initiation processes. The information retrieved from the analyses was shared in the public domain in the form of a database: Cb-DElncRNAdb, and made available at http://backlin.cabgrid.res.in/Cb-DElncRNA/index.php, which may be useful for the scientific community engaged cluster bean research.
Collapse
Affiliation(s)
- Sarika Sahu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | | | - Swati Saxena
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Palak Gupta
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Kishor Gaikwad
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| |
Collapse
|
4
|
Liu Q, Xue J, Zhang L, Jiang L, Li C. Unveiling the Roles of LncRNA MOIRAs in Rice Blast Disease Resistance. Genes (Basel) 2024; 15:82. [PMID: 38254971 PMCID: PMC10815219 DOI: 10.3390/genes15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Rice blast disease, caused by the fungal pathogen Magnaporthe oryzae, is a major threat to rice production worldwide. This study investigates the role of long non-coding RNAs (lncRNAs) in rice's response to this destructive disease, with a focus on their impacts on disease resistance and yield traits. Three specific lncRNAs coded by M. oryzae infection-responsive lncRNAs (MOIRAs), MOIRA1, MOIRA2, and MOIRA3, were identified as key regulators of rice's response to M. oryzae infection. Strikingly, when MOIRA1 and MOIRA2 were overexpressed, they exhibited a dual function: they increased rice's susceptibility to blast fungus, indicating a negative role in disease resistance, while simultaneously enhancing tiller numbers and single-plant yield, with no adverse effects on other yield-related traits. This unexpected improvement in productivity suggests the possibility of overcoming the traditional trade-off between disease resistance and crop yield. These findings provide a novel perspective on crop enhancement, offering a promising solution to global food security challenges by developing rice varieties that effectively balance disease resistance and increased productivity.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (L.J.); (C.L.)
| | - Jiao Xue
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Lanlan Zhang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (L.J.); (C.L.)
| | - Liqun Jiang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (L.J.); (C.L.)
| | - Chen Li
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (L.J.); (C.L.)
| |
Collapse
|
5
|
Magar ND, Shah P, Barbadikar KM, Bosamia TC, Madhav MS, Mangrauthia SK, Pandey MK, Sharma S, Shanker AK, Neeraja CN, Sundaram RM. Long non-coding RNA-mediated epigenetic response for abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108165. [PMID: 38064899 DOI: 10.1016/j.plaphy.2023.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024]
Abstract
Plants perceive environmental fluctuations as stress and confront several stresses throughout their life cycle individually or in combination. Plants have evolved their sensing and signaling mechanisms to perceive and respond to a variety of stresses. Epigenetic regulation plays a critical role in the regulation of genes, spatiotemporal expression of genes under stress conditions and imparts a stress memory to encounter future stress responses. It is quintessential to integrate our understanding of genetics and epigenetics to maintain plant fitness, achieve desired genetic gains with no trade-offs, and durable long-term stress tolerance. The long non-coding RNA >200 nts having no coding potential (or very low) play several roles in epigenetic memory, contributing to the regulation of gene expression and the maintenance of cellular identity which include chromatin remodeling, imprinting (dosage compensation), stable silencing, facilitating nuclear organization, regulation of enhancer-promoter interactions, response to environmental signals and epigenetic switching. The lncRNAs are involved in a myriad of stress responses by activation or repression of target genes and hence are potential candidates for deploying in climate-resilient breeding programs. This review puts forward the significant roles of long non-coding RNA as an epigenetic response during abiotic stresses in plants and the prospects of deploying lncRNAs for designing climate-resilient plants.
Collapse
Affiliation(s)
- Nakul D Magar
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India; Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Priya Shah
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Kalyani M Barbadikar
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Tejas C Bosamia
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gujarat, 364002, India
| | - M Sheshu Madhav
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Arun K Shanker
- Plant Physiology, ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, 500059, India
| | - C N Neeraja
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - R M Sundaram
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| |
Collapse
|
6
|
Cordeiro D, Canhoto J, Correia S. Regulatory non-coding RNAs: Emerging roles during plant cell reprogramming and in vitro regeneration. FRONTIERS IN PLANT SCIENCE 2022; 13:1049631. [PMID: 36438127 PMCID: PMC9684189 DOI: 10.3389/fpls.2022.1049631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Plant regeneration is a well-known capacity of plants occurring either in vivo or in vitro. This potential is the basis for plant micropropagation and genetic transformation as well as a useful system to analyse different aspects of plant development. Recent studies have proven that RNA species with no protein-coding capacity are key regulators of cellular function and essential for cell reprogramming. In this review, the current knowledge on the role of several ncRNAs in plant regeneration processes is summarized, with a focus on cell fate reprogramming. Moreover, the involvement/impact of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and small-interfering RNAs (siRNAs) in the regulatory networks of cell dedifferentiation, proliferation and differentiation is also analysed. A deeper understanding of plant ncRNAs in somatic cell reprogramming will allow a better modulation of in vitro regeneration processes such as organogenesis and somatic embryogenesis.
Collapse
|
7
|
Klodová B, Potěšil D, Steinbachová L, Michailidis C, Lindner AC, Hackenberg D, Becker JD, Zdráhal Z, Twell D, Honys D. Regulatory dynamics of gene expression in the developing male gametophyte of Arabidopsis. PLANT REPRODUCTION 2022:10.1007/s00497-022-00452-5. [PMID: 36282332 PMCID: PMC10363097 DOI: 10.1007/s00497-022-00452-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Sexual reproduction in angiosperms requires the production and delivery of two male gametes by a three-celled haploid male gametophyte. This demands synchronized gene expression in a short developmental window to ensure double fertilization and seed set. While transcriptomic changes in developing pollen are known for Arabidopsis, no studies have integrated RNA and proteomic data in this model. Further, the role of alternative splicing has not been fully addressed, yet post-transcriptional and post-translational regulation may have a key role in gene expression dynamics during microgametogenesis. We have refined and substantially updated global transcriptomic and proteomic changes in developing pollen for two Arabidopsis accessions. Despite the superiority of RNA-seq over microarray-based platforms, we demonstrate high reproducibility and comparability. We identify thousands of long non-coding RNAs as potential regulators of pollen development, hundreds of changes in alternative splicing and provide insight into mRNA translation rate and storage in developing pollen. Our analysis delivers an integrated perspective of gene expression dynamics in developing Arabidopsis pollen and a foundation for studying the role of alternative splicing in this model.
Collapse
Affiliation(s)
- Božena Klodová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Praha 2, 128 00, Czech Republic
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Christos Michailidis
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Ann-Cathrin Lindner
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
- KWS SAAT SE & Co. KGaA, Grimsehlstraße 31, 37574, Einbeck, Germany
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| |
Collapse
|
8
|
Sruthi KB, Menon A, P A, Vasudevan Soniya E. Pervasive translation of small open reading frames in plant long non-coding RNAs. FRONTIERS IN PLANT SCIENCE 2022; 13:975938. [PMID: 36352887 PMCID: PMC9638090 DOI: 10.3389/fpls.2022.975938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) are primarily recognized as non-coding transcripts longer than 200 nucleotides with low coding potential and are present in both eukaryotes and prokaryotes. Recent findings reveal that lncRNAs can code for micropeptides in various species. Micropeptides are generated from small open reading frames (smORFs) and have been discovered frequently in short mRNAs and non-coding RNAs, such as lncRNAs, circular RNAs, and pri-miRNAs. The most accepted definition of a smORF is an ORF containing fewer than 100 codons, and ribosome profiling and mass spectrometry are the most prevalent experimental techniques used to identify them. Although the majority of micropeptides perform critical roles throughout plant developmental processes and stress conditions, only a handful of their functions have been verified to date. Even though more research is being directed toward identifying micropeptides, there is still a dearth of information regarding these peptides in plants. This review outlines the lncRNA-encoded peptides, the evolutionary roles of such peptides in plants, and the techniques used to identify them. It also describes the functions of the pri-miRNA and circRNA-encoded peptides that have been identified in plants.
Collapse
|
9
|
A review on CRISPR/Cas-based epigenetic regulation in plants. Int J Biol Macromol 2022; 219:1261-1271. [DOI: 10.1016/j.ijbiomac.2022.08.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/13/2022] [Accepted: 08/29/2022] [Indexed: 01/09/2023]
|
10
|
Wang D, Gao Y, Sun S, Li L, Wang K. Expression Profiles and Characteristics of Apple lncRNAs in Roots, Phloem, Leaves, Flowers, and Fruit. Int J Mol Sci 2022; 23:ijms23115931. [PMID: 35682639 PMCID: PMC9180697 DOI: 10.3390/ijms23115931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/29/2022] Open
Abstract
LncRNAs impart crucial effects on various biological processes, including biotic stress responses, abiotic stress responses, fertility and development. The apple tree is one of the four major fruit trees in the world. However, lncRNAs's roles in different tissues of apple are unknown. We identified the lncRNAs in five tissues of apples including the roots, phloem, leaves, flowers, and fruit, and predicted the intricate regulatory networks. A total of 9440 lncRNAs were obtained. LncRNA target prediction revealed 10,628 potential lncRNA-messenger RNA (mRNA) pairs, 9410 pairs functioning in a cis-acting fashion, and 1218 acting in a trans-acting fashion. Functional enrichment analysis showed that the targets were significantly enriched in molecular functions related to photosynthesis-antenna proteins, single-organism metabolic process and glutathione metabolism. Additionally, a total of 88 lncRNAs have various functions related to microRNAs (miRNAs) as miRNA precursors. Interactions between lncRNAs and miRNAs were predicted, 1341 possible interrelations between 187 mdm-miRNAs and 174 lncRNAs (1.84%) were identified. MSTRG.121644.5, MSTRG.121644.8, MSTRG.2929.2, MSTRG.3953.2, MSTRG.63448.2, MSTRG.9870.2, and MSTRG.9870.3 could participate in the functions in roots as competing endogenous RNAs (ceRNAs). MSTRG.11457.2, MSTRG.138614.2, and MSTRG.60895.2 could adopt special functions in the fruit by working with miRNAs. A further analysis showed that different tissues formed special lncRNA-miRNA-mRNA networks. MSTRG.60895.2-mdm-miR393-MD17G1009000 may participate in the anthocyanin metabolism in the fruit. These findings provide a comprehensive view of potential functions for lncRNAs, corresponding target genes, and related lncRNA-miRNA-mRNA networks, which will increase our knowledge of the underlying development mechanism in apple.
Collapse
Affiliation(s)
| | | | | | | | - Kun Wang
- Correspondence: ; Tel.: +86-429-359-8120
| |
Collapse
|
11
|
Sharma Y, Sharma A, Madhu, Shumayla, Singh K, Upadhyay SK. Long Non-Coding RNAs as Emerging Regulators of Pathogen Response in Plants. Noncoding RNA 2022; 8:4. [PMID: 35076574 PMCID: PMC8788567 DOI: 10.3390/ncrna8010004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts without protein-coding potential that contain more than 200 nucleotides that play important roles in plant survival in response to different stresses. They interact with molecules such as DNA, RNA, and protein, and play roles in the regulation of chromatin remodeling, RNA metabolism, and protein modification activities. These lncRNAs regulate the expression of their downstream targets through epigenetic changes, at the level of transcription and post-transcription. Emerging information from computational biology and functional characterization of some of them has revealed their diverse mechanisms of action and possible roles in biological processes such as flowering time, reproductive organ development, as well as biotic and abiotic stress responses. In this review, we have mainly focused on the role of lncRNAs in biotic stress response due to the limited availability of knowledge in this domain. We have discussed the available molecular mechanisms of certain known lncRNAs against specific pathogens. Further, considering that fungal, viral, and bacterial diseases are major factors in the global food crisis, we have highlighted the importance of lncRNAs against pathogen responses and the progress in plant research to develop a better understanding of their functions and molecular mechanisms.
Collapse
Affiliation(s)
- Yashraaj Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| | - Madhu
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| | - Shumayla
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Santosh Kumar Upadhyay
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| |
Collapse
|
12
|
Li L, Luo H, Lim DH, Han L, Li Y, Fu XD, Qi Y. Global profiling of RNA-chromatin interactions reveals co-regulatory gene expression networks in Arabidopsis. NATURE PLANTS 2021; 7:1364-1378. [PMID: 34650265 DOI: 10.1038/s41477-021-01004-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
It is increasingly evident that various RNAs can bind chromatin to regulate gene expression and genome organization. Here we adapted a sequencing-based technique to profile RNA-chromatin interactions at a genome-wide scale in Arabidopsis seedlings. We identified more than 10,000 RNA-chromatin interactions mediated by protein-coding RNAs and non-coding RNAs. Cis and intra-chromosomal interactions are mainly mediated by protein-coding RNAs, whereas inter-chromosomal interactions are primarily mediated by non-coding RNAs. Many RNA-chromatin interactions tend to positively correlate with DNA-DNA interactions, suggesting their mutual influence and reinforcement. We further show that some RNA-chromatin interactions undergo alterations in response to biotic and abiotic stresses and that altered RNA-chromatin interactions form co-regulatory networks. Our study provides a global view on RNA-chromatin interactions in Arabidopsis and a rich resource for future investigations of regulatory roles of RNAs in gene expression and genome organization.
Collapse
Affiliation(s)
- Lanxia Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Haofei Luo
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Do-Hwan Lim
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lu Han
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
13
|
Long Non-Coding RNAs, the Dark Matter: An Emerging Regulatory Component in Plants. Int J Mol Sci 2020; 22:ijms22010086. [PMID: 33374835 PMCID: PMC7795044 DOI: 10.3390/ijms22010086] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are pervasive transcripts of longer than 200 nucleotides and indiscernible coding potential. lncRNAs are implicated as key regulatory molecules in various fundamental biological processes at transcriptional, post-transcriptional, and epigenetic levels. Advances in computational and experimental approaches have identified numerous lncRNAs in plants. lncRNAs have been found to act as prime mediators in plant growth, development, and tolerance to stresses. This review summarizes the current research status of lncRNAs in planta, their classification based on genomic context, their mechanism of action, and specific bioinformatics tools and resources for their identification and characterization. Our overarching goal is to summarize recent progress on understanding the regulatory role of lncRNAs in plant developmental processes such as flowering time, reproductive growth, and abiotic stresses. We also review the role of lncRNA in nutrient stress and the ability to improve biotic stress tolerance in plants. Given the pivotal role of lncRNAs in various biological processes, their functional characterization in agriculturally essential crop plants is crucial for bridging the gap between phenotype and genotype.
Collapse
|
14
|
Li M, Cao A, Wang R, Li Z, Li S, Wang J. Genome-wide identification and integrated analysis of lncRNAs in rice backcross introgression lines (BC 2F 12). BMC PLANT BIOLOGY 2020; 20:300. [PMID: 32600330 PMCID: PMC7325253 DOI: 10.1186/s12870-020-02508-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/22/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Distant hybridization is an important way to create interspecific genetic variation and breed new varieties in rice. A lot of backcross introgression lines (BILs) had been constructed for the scientific issues in rice. However, studies on the critical regulatory factor lncRNA in cultivated rice, wild rice and their BIL progenies were poorly reported. RESULTS Here, high-throughput RNA sequencing technology was used to explore the functional characteristics and differences of lncRNAs in O. sativa, O. longistaminata and their three BC2F12 progenies. A total of 1254 lncRNAs were screened out, and the number of differentially expressed lncRNAs between progenies and O. sativa were significantly less than that between progenies and O. longistaminata. Some lncRNAs regulated more than one mRNA, and 89.5% of lncRNAs regulated the expression of target genes through cis-acting. A total of 78 lncRNAs and 271 mRNAs were targeted by 280 miRNAs, and 22 lncRNAs were predicted to be the precursor of 20 microRNAs. Some miRNAs were found to target their own potential precursor lncRNAs. Over 50% of lncRNAs showed parental expression level dominance (ELD) in all three progenies, and most lncRNAs showed ELD-O. sativa rather than ELD-O. longistaminata. Further analysis showed that lncRNAs might regulate the expression of plant hormone-related genes and the adaptability of O. sativa, O. longistaminata and their progenies. CONCLUSIONS Taken together, the above results provided valuable clues for elucidating the functional features and expression differences of lncRNAs between O. sativa, O. longistaminata and their BIL progenies, and expanded our understanding about the biological functions of lncRNAs in rice.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Aqin Cao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Zeyu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
15
|
Yan X, Ma L, Yang M. Identification and characterization of long non-coding RNA (lncRNA) in the developing seeds of Jatropha curcas. Sci Rep 2020; 10:10395. [PMID: 32587349 PMCID: PMC7316758 DOI: 10.1038/s41598-020-67410-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in plant development. However, the information of lncRNAs in Jatropha curcas remains largely unexplored. Thus, an attempt has been made in J. curcas to identify 1,850 lncRNAs based on deep sequencing of developing seeds at three typical stages. About ten percent lncRNAs (196 lncRNAs) were differentially expressed lncRNAs during seed developing process. Together with reverse transcription quantitative real-time PCR, the lncRNA expression analyses revealed the stage-specific expression patterns of some novel lncRNAs in J. curcas. The target genes of lncRNAs were annotated for their roles in various biological processes such as gene expression, metabolism, and cell growth. Besides, 10 lncRNAs were identified as the precursors of microRNAs and 26 lncRNAs were predicted to be the targets of Jatropha miRNAs. A total of 31 key lncRNAs play critical roles in the seed developing process in the context of cell growth and development, lipid metabolism, and seed maturation. Our study provides the first systematic study of lncRNAs in the developing seeds of J. curcas and facilitates the functional research of plant lncRNAs and the regulation of seed development.
Collapse
Affiliation(s)
- Xihuan Yan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.,Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Lanqing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China. .,Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
| | - MingFeng Yang
- Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
| |
Collapse
|
16
|
Identification and characterization of mRNAs and lncRNAs of a barley shrunken endosperm mutant using RNA-seq. Genetica 2020; 148:55-68. [PMID: 32078720 DOI: 10.1007/s10709-020-00087-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/13/2020] [Indexed: 01/03/2023]
Abstract
Barley shrunken endosperm mutants have been extensively reported. However, knowledge of the underlying molecular mechanisms of these mutants remains limited. Here, a pair of near isogenic lines (normal endosperm: Bowman and shrunken endosperm: sex1) was subjected to transcriptome analysis to identify mRNAs and lncRNAs related to endosperm development to further dissect its mechanism of molecular regulation. A total of 2123 (1140 up- and 983 down-regulated) unique differentially expressed genes (DEGs) were detected. Functional analyses showed that these DEGs were mainly involved in starch and sucrose metabolism, biosynthesis of secondary metabolites, and plant hormone signal transduction. A total of 343 unique target genes were identified for 57 differentially expressed lncRNAs (DE lncRNAs). These DE lncRNAs were mainly involved in glycerophospholipid metabolism, starch and sucrose metabolism, hormone signal transduction, and stress response. In addition, key lncRNAs were identified by constructing a co-expression network of the target genes of DE lncRNAs. Transcriptome results suggested that mRNA and lncRNA played a critical role in endosperm development. The shrunken endosperm in barley seems to be closely related to plant hormone signal transduction, starch and sucrose metabolism, and cell apoptosis. This study provides a foundation for fine mapping, elucidates the molecular mechanism of shrunken endosperm mutants, and also provides a reference for further studies of lncRNAs during the grain development of plants.
Collapse
|