1
|
Aparecida Dos Santos France F, Maeda DK, Rodrigues AB, Ono M, Lopes Nogueira Marchetti F, Marchetti MM, Faustino Martins AC, Gomes RDS, Rainho CA. Exploring fatty acids from royal jelly as a source of histone deacetylase inhibitors: from the hive to applications in human well-being and health. Epigenetics 2024; 19:2400423. [PMID: 39255363 PMCID: PMC11404605 DOI: 10.1080/15592294.2024.2400423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
A differential diet with royal jelly (RJ) during early larval development in honeybees shapes the phenotype, which is probably mediated by epigenetic regulation of gene expression. Evidence indicates that small molecules in RJ can modulate gene expression in mammalian cells, such as the fatty acid 10-hydroxy-2-decenoic acid (10-HDA), previously associated with the inhibition of histone deacetylase enzymes (HDACs). Therefore, we combined computational (molecular docking simulations) and experimental approaches for the screening of potential HDAC inhibitors (HDACi) among 32 RJ-derived fatty acids. Biochemical assays and gene expression analyses (Reverse Transcriptase - quantitative Polymerase Chain Reaction) were performed to evaluate the functional effects of the major RJ fatty acids, 10-HDA and 10-HDAA (10-hydroxy-decanoic acid), in two human cancer cell lines (HCT116 and MDA-MB-231). The molecular docking simulations indicate that these fatty acids might interact with class I HDACs, specifically with the catalytic domain of human HDAC2, likewise well-known HDAC inhibitors (HDACi) such as SAHA (suberoylanilide hydroxamic acid) and TSA (Trichostatin A). In addition, the combined treatment with 10-HDA and 10-HDAA inhibits the activity of human nuclear HDACs and leads to a slight increase in the expression of HDAC-coding genes in cancer cells. Our findings indicate that royal jelly fatty acids collectively contribute to HDAC inhibition and that 10-HDA and 10-HDAA are weak HDACi that facilitate the acetylation of lysine residues of chromatin, triggering an increase in gene expression levels in cancer cells.
Collapse
Affiliation(s)
| | - Debora Kazumi Maeda
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Ana Beatriz Rodrigues
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Mai Ono
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Franciele Lopes Nogueira Marchetti
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcos Martins Marchetti
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | | | - Cláudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
2
|
Palli SR. Epigenetic regulation of post-embryonic development. CURRENT OPINION IN INSECT SCIENCE 2021; 43:63-69. [PMID: 33068783 PMCID: PMC8044252 DOI: 10.1016/j.cois.2020.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 05/02/2023]
Abstract
Modifications to DNA and core histones influence chromatin organization and expression of the genome. DNA methylation plays a significant role in the regulation of multiple biological processes that regulate behavior and caste differentiation in social insects. Histone modifications play significant roles in the regulation of development and reproduction in other insects. Genes coding for acetyltransferases, deacetylases, methyltransferases, and demethylases that modify core histones have been identified in genomes of multiple insects. Studies on the function and mechanisms of action of some of these enzymes uncovered their contribution to post-embryonic development. The results from studies on epigenetic modifiers could help in the identification of inhibitors of epigenetic modifiers that could be developed to control pests and disease vectors.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, S225 Ag. Science N, Lexington, KY 40546, United States.
| |
Collapse
|