1
|
Zhu H, Mao X, Sajnani S, Yang H, Li T, Tan S. Psychrophilic insights into petroleum degradation: Gene abundance dynamics. Enzyme Microb Technol 2025; 188:110642. [PMID: 40184824 DOI: 10.1016/j.enzmictec.2025.110642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Petroleum degradation by psychrophiles can be enhanced on the basis of omics analyses, which offer better sensitivity than traditional biochemical methods do. A metagenomic analysis focusing on gene abundance comparisons may provide new guidance to optimize soil decontamination under cold environmental conditions. The soil used in this study was sampled from Dalian, from which an indigenous consortium was isolated. The degradative soil systems, initially categorized into control (DLC) and experimental (DLD) groups, were kept at room temperature (20 ± 5 °C) for six weeks. The DLD group was subsequently transferred to a low-temperature environment (5-10 °C) for 90 days and renamed DDL. A petroleum removal rate of 74.59 % was achieved in the process from DLD to DDL groups. Each soil sample was subjected to analysis and metagenomic sequencing. The abundance of genes of interest was compared between pathways to determine trends. The findings demonstrate that psychrophilic degradation is more effective than natural remediation is. The soil microbial community structure displayed site specificity, with 802 genes in DDL associated with 249 pathways, indicating greater abundance of psychrophilic genes in DDL than in DLC. The abundance of key genes was at different orders of magnitude but showed similar trends. The abundance of genes associated with hydrocarbon-related metabolism surpassed that of genes associated with sphingolipid, fatty acid, or benzene metabolism. This study provides valuable insights into psychrophilic microbe-driven petroleum degradation and indicates the need for precise supplementation of biosurfactants to improve remediation efficiency.
Collapse
Affiliation(s)
- Hongfei Zhu
- College of Environmental Science and Engineering of Liaoning Technical University, No. 47 Zhonghua Road, Fuxin, Liaoning 123000, China.
| | - Xiaoshuang Mao
- College of Environmental Science and Engineering of Liaoning Technical University, No. 47 Zhonghua Road, Fuxin, Liaoning 123000, China
| | - Shahdev Sajnani
- Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Haimei Yang
- College of Environmental Science and Engineering of Liaoning Technical University, No. 47 Zhonghua Road, Fuxin, Liaoning 123000, China
| | - Ting Li
- College of Environmental Science and Engineering of Liaoning Technical University, No. 47 Zhonghua Road, Fuxin, Liaoning 123000, China
| | - Siqi Tan
- College of Environmental Science and Engineering of Liaoning Technical University, No. 47 Zhonghua Road, Fuxin, Liaoning 123000, China
| |
Collapse
|
2
|
Majewska E, Twarda-Clapa A, Jędrzejczak-Krzepkowska M, Kamińska-Dwórznicka A, Zakłos-Szyda M, Białkowska AM. Antifreeze proteins produced by Antarctic yeast from the genus Glaciozyma as cryoprotectants in food storage. PLoS One 2025; 20:e0318459. [PMID: 40048460 PMCID: PMC11884722 DOI: 10.1371/journal.pone.0318459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/15/2025] [Indexed: 03/09/2025] Open
Abstract
Synthesis of antifreeze proteins (AFPs) is one of the adaptations of psychrophilic yeast to live in cold environments. AFPs demonstrate thermal hysteresis (TH) activity and inhibit the recrystallization of ice (IRI) during periodic temperature fluctuations. In this study, the Antarctic yeast strain 186, identified as Glaciozyma martinii, was found to synthesize an extracellular, glycosylated ~27 kDa ice-binding protein (GmAFP) exhibiting IRI activity. It is the first evidence of AFP secretion by the psychrophilic yeast Glaciozyma martinii. To scale up protein production, a synthetic gene from a closely related cold-adapted species, Glaciozyma antarctica, was expressed in Pichia pastoris GS115 strain. The recombinant 26.57 kD protein (GaAFP) displayed IRI activity and a cryoprotective effect in food storage. The addition of GaAFP to the stored frozen vegetables and fruits (carrot, kohlrabi, and blueberry) markedly reduced the drip loss during the thawing process and positively affected their structure, with an effect similar to glycerol. Moreover, GaAFP increased the cell survival of Saccharomyces cerevisiae after freezing. The insights from this study provided proof that AFPs from natural sources may serve as competent biodegradable, eco-friendly, non-cytotoxic and biocompatible substitutes for traditional cryoprotectants in enhancing the quality of frozen foods.
Collapse
Affiliation(s)
- Edyta Majewska
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Aleksandra Twarda-Clapa
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Marzena Jędrzejczak-Krzepkowska
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Anna Kamińska-Dwórznicka
- Faculty of Food Sciences, Department of Food Engineering and Process Management, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Zakłos-Szyda
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Aneta Monika Białkowska
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
3
|
Choudhary P, Bhatt S, Chatterjee S. From freezing to functioning: cellular strategies of cold-adapted bacteria for surviving in extreme environments. Arch Microbiol 2024; 206:329. [PMID: 38940837 DOI: 10.1007/s00203-024-04058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The ability of cold-adapted bacteria to survive in extreme cold and diverse temperatures is due to their unique attributes like cell membrane stability, up-regulation of peptidoglycan biosynthesis, increased production of extracellular polymeric substances, and expansion of membrane pigment. Various cold-adapted proteins, including ice-nucleating proteins (INPs), antifreeze proteins (AFPs), cold shock proteins (Csps), and cold-acclimated proteins (CAPs), help the bacteria to survive in these environments. To sustain cells from extreme cold conditions and maintain stability in temperature fluctuations, survival strategies at the molecular level and their mechanism play significant roles in adaptations in cryospheric conditions. Furthermore, cold shock domains present in the multifunctional cold shock proteins play crucial roles in their adaptation strategies. The considerable contribution of lipopeptides, osmolytes, and membrane pigments plays an integral part in their survival in extreme environments. This review summarizes the evolutionary history of cold-adapted bacteria and their molecular and cellular adaptation strategies to thrive in harsh cold environments. It also discusses the importance of carotenoids produced, lipid composition, cryoprotectants, proteins, and chaperones related to this adaptation. Furthermore, the functions and mechanisms of adaptations within the cell are discussed briefly. One can utilize and explore their potential in various biotechnology applications and their evolutionary journey by knowing the inherent mechanism of their molecular and cellular adaptation to cold climatic conditions. This review will help all branches of the life science community understand the basic microbiology of psychrophiles and their hidden prospect in life science research.
Collapse
Affiliation(s)
- Priyanka Choudhary
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block-Shahpur, Kangra, Himachal Pradesh, 176206, India
| | - Sunidhi Bhatt
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block-Shahpur, Kangra, Himachal Pradesh, 176206, India
| | - Subhankar Chatterjee
- Bioremediation and Metabolomics Research Group, Dept. of Ecology & Environmental Sciences, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
4
|
Rekadwad BN, Li WJ, Gonzalez JM, Punchappady Devasya R, Ananthapadmanabha Bhagwath A, Urana R, Parwez K. Extremophiles: the species that evolve and survive under hostile conditions. 3 Biotech 2023; 13:316. [PMID: 37637002 PMCID: PMC10457277 DOI: 10.1007/s13205-023-03733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Extremophiles possess unique cellular and molecular mechanisms to assist, tolerate, and sustain their lives in extreme habitats. These habitats are dominated by one or more extreme physical or chemical parameters that shape existing microbial communities and their cellular and genomic features. The diversity of extremophiles reflects a long list of adaptations over millions of years. Growing research on extremophiles has considerably uncovered and increased our understanding of life and its limits on our planet. Many extremophiles have been greatly explored for their application in various industrial processes. In this review, we focused on the characteristics that microorganisms have acquired to optimally thrive in extreme environments. We have discussed cellular and molecular mechanisms involved in stability at respective extreme conditions like thermophiles, psychrophiles, acidophiles, barophiles, etc., which highlight evolutionary aspects and the significance of extremophiles for the benefit of mankind.
Collapse
Affiliation(s)
- Bhagwan Narayan Rekadwad
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
- National Centre for Microbial Resource (NCMR), DBT-National Centre for Cell Science (DBT-NCCS), Savitribai Phule Pune University Campus, Ganeshkhind Road, Pune, 411007 Maharashtra India
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Ganeshkhind Road, Pune, 411007 Maharashtra India
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Juan M. Gonzalez
- Microbial Diversity and Microbiology of Extreme Environments Research Group, Agencia Estatal Consejo Superior De Investigaciones Científicas, IRNAS-CSIC, Avda. Reina Mercedes, 10, 41012 Seville, Spain
| | - Rekha Punchappady Devasya
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
| | - Arun Ananthapadmanabha Bhagwath
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
- Yenepoya Institute of Arts, Science, Commerce and Management, A Constituent Unit of Yenepoya (Deemed to be University), Yenepoya Complex, Balmatta, Mangalore, 575002 Karnataka India
| | - Ruchi Urana
- Department of Environmental Science and Engineering, Faculty of Environmental and Bio Sciences and Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001 India
| | - Khalid Parwez
- Department of Microbiology, Shree Narayan Medical Institute and Hospital, Saharsa, Bihar 852201 India
| |
Collapse
|
5
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Modern Trends in Natural Antibiotic Discovery. Life (Basel) 2023; 13:1073. [PMID: 37240718 PMCID: PMC10221674 DOI: 10.3390/life13051073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Natural scaffolds remain an important basis for drug development. Therefore, approaches to natural bioactive compound discovery attract significant attention. In this account, we summarize modern and emerging trends in the screening and identification of natural antibiotics. The methods are divided into three large groups: approaches based on microbiology, chemistry, and molecular biology. The scientific potential of the methods is illustrated with the most prominent and recent results.
Collapse
Affiliation(s)
- Anna A. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
| |
Collapse
|
6
|
Some Clues about Enzymes from Psychrophilic Microorganisms. Microorganisms 2022; 10:microorganisms10061161. [PMID: 35744679 PMCID: PMC9227589 DOI: 10.3390/microorganisms10061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Enzymes purified from psychrophilic microorganisms prove to be efficient catalysts at low temperatures and possess a great potential for biotechnological applications. The low-temperature catalytic activity has to come from specific structural fluctuations involving the active site region, however, the relationship between protein conformational stability and enzymatic activity is subtle. We provide a survey of the thermodynamic stability of globular proteins and their rationalization grounded in a theoretical approach devised by one of us. Furthermore, we provide a link between marginal conformational stability and protein flexibility grounded in the harmonic approximation of the vibrational degrees of freedom, emphasizing the occurrence of long-wavelength and excited vibrations in all globular proteins. Finally, we offer a close view of three enzymes: chloride-dependent α-amylase, citrate synthase, and β-galactosidase.
Collapse
|
7
|
Pulavarti SVSRK, Maguire JB, Yuen S, Harrison JS, Griffin J, Premkumar L, Esposito EA, Makhatadze GI, Garcia AE, Weiss TM, Snell EH, Kuhlman B, Szyperski T. From Protein Design to the Energy Landscape of a Cold Unfolding Protein. J Phys Chem B 2022; 126:1212-1231. [PMID: 35128921 PMCID: PMC9281400 DOI: 10.1021/acs.jpcb.1c10750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding protein folding is crucial for protein sciences. The conformational spaces and energy landscapes of cold (unfolded) protein states, as well as the associated transitions, are hardly explored. Furthermore, it is not known how structure relates to the cooperativity of cold transitions, if cold and heat unfolded states are thermodynamically similar, and if cold states play important roles for protein function. We created the cold unfolding 4-helix bundle DCUB1 with a de novo designed bipartite hydrophilic/hydrophobic core featuring a hydrogen bond network which extends across the bundle in order to study the relative importance of hydrophobic versus hydrophilic protein-water interactions for cold unfolding. Structural and thermodynamic characterization resulted in the discovery of a complex energy landscape for cold transitions, while the heat unfolded state is a random coil. Below ∼0 °C, the core of DCUB1 disintegrates in a largely cooperative manner, while a near-native helical content is retained. The resulting cold core-unfolded state is compact and features extensive internal dynamics. Below -5 °C, two additional cold transitions are seen, that is, (i) the formation of a water-mediated, compact, and highly dynamic dimer, and (ii) the onset of cold helix unfolding decoupled from cold core unfolding. Our results suggest that cold unfolding is initiated by the intrusion of water into the hydrophilic core network and that cooperativity can be tuned by varying the number of core hydrogen bond networks. Protein design has proven to be invaluable to explore the energy landscapes of cold states and to robustly test related theories.
Collapse
Affiliation(s)
- Surya V S R K Pulavarti
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jack B Maguire
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shirley Yuen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Joseph S Harrison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jermel Griffin
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Edward A Esposito
- Malvern Panalytical Inc, Northhampton, Massachsetts 01060, United States
| | - George I Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 08544, United States
| | - Angel E Garcia
- Center for Non Linear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center, Stanford University, Menlo Park, California 94025, United States
| | - Edward H Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, United States.,Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas Szyperski
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|