1
|
Gao Y, Yi W, Yang J, Jiang K, Yang T, Li Z, Zhang M, Liu Z, Wu B. Effect of Calcination Atmosphere on the Performance of Cu/Al 2O 3 Catalyst for the Selective Hydrogenation of Furfural to Furfuryl Alcohol. Molecules 2024; 29:2753. [PMID: 38930819 PMCID: PMC11205928 DOI: 10.3390/molecules29122753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The selective hydrogenation of the biomass platform molecule furfural (FAL) to produce furfuryl alcohol (FA) is of great significance to alleviate the energy crisis. Cu-based catalysts are the most commonly used catalysts, and their catalytic performance can be optimized by changing the preparation method. This paper emphasized the effect of calcination atmosphere on the performance of a Cu/Al2O3 catalyst for the selective hydrogenation of FAL. The precursor of the Cu/Al2O3 catalyst prepared by the ammonia evaporation method was treated with different calcination atmospheres (N2 and air). On the basis of the combined results from the characterizations using in situ XRD, TEM, N2O titration, H2-TPR and XPS, the Cu/Al2O3 catalyst calcined in the N2 atmosphere was more favorable for the dispersion and reduction of Cu species and the reduction process could produce more Cu+ and Cu0 species, which facilitated the selective hydrogenation of FAL to FA. The experimental results showed that the N2 calcination atmosphere improved the FAL conversion and FA selectivity, and the FAL conversion was further increased after reduction. Cu/Al2O3-N2-R exhibited the outstanding performance, with a high yield of 99.9% of FA after 2 h at 120 °C and an H2 pressure of 1 MPa. This work provides a simple, efficient and economic method to improve the C=O hydrogenation performance of Cu-based catalysts.
Collapse
Affiliation(s)
- Yongzhen Gao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Yi
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jingyi Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Jiang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihan Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhongyi Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Coking Coal Resources Green Exploitation, Zhengzhou University, Zhengzhou 450001, China
| | - Benlai Wu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Kuhaudomlap S, Mekasuwandumrong O, Praserthdam P, Lee KM, Jones CW, Panpranot J. Influence of Highly Stable Ni 2+ Species in Ni Phyllosilicate Catalysts on Selective Hydrogenation of Furfural to Furfuryl Alcohol. ACS OMEGA 2023; 8:249-261. [PMID: 36643509 PMCID: PMC9835083 DOI: 10.1021/acsomega.2c03590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/29/2022] [Indexed: 06/17/2023]
Abstract
Enhancing the catalytic performance of non-noble Ni catalysts in the selective hydrogenation of furfural to furfuryl alcohol (FA) in terms of furfural conversion, selectivity, and good recyclability is challenging. Here, spherical nickel phyllosilicate catalysts (Ni_PS) with fibrous-like structures are prepared via a modified sol-gel method with Ni loadings of 2-30 wt %. Upon exposure to air, all the reduced Ni_PS catalysts exhibit more than 80% Ni0/Niphyllosilicate species on the surface, whereas a large portion of Ni oxide species (>55%) is presented on the impregnated catalyst. The Ni2+ species in nickel phyllosilicate catalysts are active and highly stable during reduction, reaction, and regeneration, yielding stable catalytic performance for multiple recycle tests in furfural hydrogenation to FA. Furfural conversion over the Ni_PS catalysts increased monotonically with increasing Ni loading without an FA selectivity drop. The presence of both metallic Ni0 and Niphyllosilicate also produces a synergistic promotional effect for FA formation.
Collapse
Affiliation(s)
- Sasithorn Kuhaudomlap
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering, Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Okorn Mekasuwandumrong
- Department
of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Piyasan Praserthdam
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering, Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kiat Moon Lee
- Department
of Chemical & Petroleum Engineering, Faculty of Engineering, Technology
and Built Environment, UCSI University, 56000 Kuala Lumpur, Malaysia
| | - Christopher W. Jones
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Joongjai Panpranot
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering, Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Department
of Chemical & Petroleum Engineering, Faculty of Engineering, Technology
and Built Environment, UCSI University, 56000 Kuala Lumpur, Malaysia
- Bio-Circular-Green-Economy
Technology & Engineering Center, BCGeTEC, Department of Chemical
Engineering, Faculty of Engineering, Chulalongkorn
University, Bangkok 10330, Thailand
| |
Collapse
|