1
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|
2
|
Transgenic overexpression of BAFF regulates the expression of immune-related genes in zebrafish, Danio rerio. J Genet 2017; 95:751-760. [PMID: 27994173 DOI: 10.1007/s12041-016-0690-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The B-cell activating factor (BAFF) is a member of tumour necrosis factor (TNF) superfamily that specifically regulates B lymphocyte proliferation and survival. Excess BAFF leads to overproduction of antibodies for secretion, anti-dsDNA antibodies and a lupus-like syndrome in mice. To investigate whether transgenic overexpression of the zebrafish BAFF leads to immunoglobulin changes and/or early maturing of the immune system, a Tol2-GFP-2A-BAFF/His recombinant plasmid was constructed by inserting a 2A peptide between the green fluorescent protein (GFP) and BAFF sequences. Functional GFP and BAFF proteins were expressed separately and confirmed in HeLa cells. The relative expression of immune-related genes (IgLC-1, IgLC-2, IgLC-3, IgD, IgM and IL-4), early lymphoid markers (Ikaros, Rag-1 and TCRAC), and the protooncogene Bcl-2 were evaluated by quantitative polymerase chain reaction (PCR) in F0 founder of transgenic zebrafish juveniles and adults. Ectopic expression of BAFF in adults was confirmed using Western blots and was shown to upregulate IgLC-1, IgLC-2, IgD, IgM, IgZ/T, Ikaros, Rag-1, TCRAC, IL-4 and Bcl-2 expression in juveniles on day 21 and IgLC-1, IgLC-2, IgD, IgM,IgZ/T, Rag-1, TCRAC and Bcl-2 expression in zebrafish three months postfertilization. The relative titers of specific IgM against Edwardsiella tarda WED were assessed using modified enzyme-linked immunosorbent assay (ELISA) with the whole body homogenate of zebrafish and demonstrated a significant increase in BAFF-transgenic group. Therefore, our findings provided novel insight into further exploration of modulating adaptive immunity and studying autoimmune diseases caused by regulating BAFF.
Collapse
|
3
|
Chernyavskaya Y, Kent B, Sadler KC. Zebrafish Discoveries in Cancer Epigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:169-97. [PMID: 27165354 DOI: 10.1007/978-3-319-30654-4_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cancer epigenome is fundamentally different than that of normal cells. How these differences arise in and contribute to carcinogenesis is not known, and studies using model organisms such as zebrafish provide an opportunity to address these important questions. Modifications of histones and DNA comprise the complex epigenome, and these influence chromatin structure, genome stability and gene expression, all of which are fundamental to the cellular changes that cause cancer. The cancer genome atlas covers the wide spectrum of genetic changes associated with nearly every cancer type, however, this catalog is currently uni-dimensional. As the pattern of epigenetic marks and chromatin structure in cancer cells is described and overlaid on the mutational landscape, the map of the cancer genome becomes multi-dimensional and highly complex. Two major questions remain in the field: (1) how the epigenome becomes repatterned in cancer and (2) which of these changes are cancer-causing. Zebrafish provide a tractable in vivo system to monitor the epigenome during transformation and to identify epigenetic drivers of cancer. In this chapter, we review principles of cancer epigenetics and discuss recent work using zebrafish whereby epigenetic modifiers were established as cancer driver genes, thus providing novel insights into the mechanisms of epigenetic reprogramming in cancer.
Collapse
Affiliation(s)
- Yelena Chernyavskaya
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Brandon Kent
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- School of Biomedical Science, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kirsten C Sadler
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- School of Biomedical Science, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- Biology Program, New York University Abu Dhabi, Saadiyat Campus, 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|