1
|
Chen Y, Wang X, Wu X, Shang Y, Wei Q, Cai H, Sha W, Qi Y, Liu S, Zhang H. Terrestrial Adaptation in Chelonoidis vicina as Revealed Based on Analysis of the Complete Mitochondrial Genome. Genes (Basel) 2025; 16:173. [PMID: 40004502 PMCID: PMC11855560 DOI: 10.3390/genes16020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Mitochondrial genomes are widely used in phylogenetics and evolutionary and ecological research. METHODS In this study, the newest mitochondrial genome of Chelonoidis vicina was assembled and annotated. The comparative mitochondrial genome and selection pressure analyses were used to examine the terrestrial adaptive evolution characteristics of C. vicina and other terrestrial reptiles. RESULTS The results reveal that the mitochondrial genome of the tortoise C. vicina is consistent with that of other tortoise species, comprising 13 protein-coding genes (PCGs), 2 rRNAs, 22 tRNAs, and 1 noncoding control region (CR). The analysis of selection pressure reveals the presence of positive selection sites in the COX2, COX3, Cytb, ND3, ND4, ND4L, ND5, and ND6 genes of terrestrial reptiles. Of these, the COX2 and ND3 genes exhibited faster evolutionary rates. The mitochondrial genome structure of C. vicina is consistent with that of different terrestrial reptiles. The positive selection sites of COX2 and ND3 in terrestrial reptiles are closely related to a change in mitochondrial energy metabolism, which is possibly related to terrestrial adaptability. CONCLUSIONS The results of this study provide new insights into the adaptive evolution of C. vicina to terrestrial niches from a mitogenomic perspective, as well as genetic resources for the protection of C. vicina.
Collapse
Affiliation(s)
- Yao Chen
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (Y.C.); (X.W.); (X.W.); (Y.S.); (Q.W.); (H.C.); (W.S.); (Y.Q.)
| | - Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (Y.C.); (X.W.); (X.W.); (Y.S.); (Q.W.); (H.C.); (W.S.); (Y.Q.)
| | - Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (Y.C.); (X.W.); (X.W.); (Y.S.); (Q.W.); (H.C.); (W.S.); (Y.Q.)
| | - Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (Y.C.); (X.W.); (X.W.); (Y.S.); (Q.W.); (H.C.); (W.S.); (Y.Q.)
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (Y.C.); (X.W.); (X.W.); (Y.S.); (Q.W.); (H.C.); (W.S.); (Y.Q.)
| | - Haotian Cai
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (Y.C.); (X.W.); (X.W.); (Y.S.); (Q.W.); (H.C.); (W.S.); (Y.Q.)
| | - Weilai Sha
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (Y.C.); (X.W.); (X.W.); (Y.S.); (Q.W.); (H.C.); (W.S.); (Y.Q.)
| | - Yan Qi
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (Y.C.); (X.W.); (X.W.); (Y.S.); (Q.W.); (H.C.); (W.S.); (Y.Q.)
| | - Shuli Liu
- Zhonghuan Shengda Environmental Technology Group (Qingyun) Co., Ltd., Dezhou 253000, China;
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (Y.C.); (X.W.); (X.W.); (Y.S.); (Q.W.); (H.C.); (W.S.); (Y.Q.)
| |
Collapse
|
2
|
Han S, Ding H, Peng H, Dai C, Zhang S, Yang J, Gao J, Kan X. Sturnidae sensu lato Mitogenomics: Novel Insights into Codon Aversion, Selection, and Phylogeny. Animals (Basel) 2024; 14:2777. [PMID: 39409726 PMCID: PMC11475038 DOI: 10.3390/ani14192777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The Sturnidae family comprises 123 recognized species in 35 genera. The taxa Mimidae and Buphagidae were formerly treated as subfamilies within Sturnidae. The phylogenetic relationships among the Sturnidae and related taxa (Sturnidae sensu lato) remain unresolved due to high rates of morphological change and concomitant morphological homoplasy. This study presents five new mitogenomes of Sturnidae sensu lato and comprehensive mitogenomic analyses. The investigated mitogenomes exhibit an identical gene composition of 37 genes-including 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes-and one control region (CR). The most important finding of this study is drawn from CAM analyses. The surprisingly unique motifs for each species provide a new direction for the molecular species identification of avian. Furthermore, the pervasiveness of the natural selection of PCGs is found in all examined species when analyzing their nucleotide composition and codon usage. We also determine the structures of mt-tRNA, mt-rRNA, and CR structures of Sturnidae sensu lato. Lastly, our phylogenetic analyses not only well support the monophyly of Sturnidae, Mimidae, and Buphagidae, but also define nine stable subclades. Taken together, our findings will enable the further elucidation of the evolutionary relationships within Sturnidae sensu lato.
Collapse
Affiliation(s)
- Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Hui Peng
- Teaching and Research Office of Evidence-Based Medicine, Wannan Medical College, Wuhu 241002, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei 230061, China;
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| | - Jinming Gao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
3
|
Mitogenomic Codon Usage Patterns of Superfamily Certhioidea (Aves, Passeriformes): Insights into Asymmetrical Bias and Phylogenetic Implications. Animals (Basel) 2022; 13:ani13010096. [PMID: 36611705 PMCID: PMC9817927 DOI: 10.3390/ani13010096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022] Open
Abstract
The superfamily Certhioidea currently comprises five families. Due to the rapid diversification, the phylogeny of Certhioidea is still controversial. The advent of next generation sequencing provides a unique opportunity for a mitogenome-wide study. Here, we first provided six new complete mitogenomes of Certhioidea (Certhia americana, C. familiaris, Salpornis spilonota, Cantorchilus leucotis, Pheugopedius coraya, and Pheugopedius genibarbis). We further paid attention to the genomic characteristics, codon usages, evolutionary rates, and phylogeny of the Certhioidea mitogenomes. All mitogenomes we analyzed displayed typical ancestral avian gene order with 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, and one control region (CR). Our study indicated the strand-biased compositional asymmetry might shape codon usage preferences in mitochondrial genes. In addition, natural selection might be the main factor in shaping the codon usages of genes. Additionally, evolutionary rate analyses indicated all mitochondrial genes were under purifying selection. Moreover, MT-ATP8 and MT-CO1 were the most rapidly evolving gene and conserved genes, respectively. According to our mitophylogenetic analyses, the monophylies of Troglodytidae and Sittidae were strongly supported. Importantly, we suggest that Salpornis should be separated from Certhiidae and put into Salpornithidae to maintain the monophyly of Certhiidae. Our findings are useful for further evolutionary studies within Certhioidea.
Collapse
|
4
|
Ding H, Bi D, Zhang S, Han S, Ye Y, Yi R, Yang J, Liu B, Wu L, Zhuo R, Kan X. The Mitogenome of Sedum plumbizincicola (Crassulaceae): Insights into RNA Editing, Lateral Gene Transfer, and Phylogenetic Implications. BIOLOGY 2022; 11:1661. [PMID: 36421375 PMCID: PMC9687357 DOI: 10.3390/biology11111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 09/08/2024]
Abstract
As the largest family within the order Saxifragales, Crassulaceae contains about 34 genera with 1400 species. Mitochondria play a critical role in cellular energy production. Since the first land plant mitogenome was reported in Arabidopsis, more than 400 mitogenomic sequences have been deposited in a public database. However, no entire mitogenome data have been available for species of Crassulaceae to date. To better understand the evolutionary history of the organelles of Crassulaceae, we sequenced and performed comprehensive analyses on the mitogenome of Sedum plumbizincicola. The master mitogenomic circle is 212,159 bp in length, including 31 protein-coding genes (PCGs), 14 tRNA genes, and 3 rRNA genes. We further identified totally 508 RNA editing sites in PCGs, and demonstrated that the second codon positions of mitochondrial genes are most prone to RNA editing events. Notably, by neutrality plot analyses, we observed that the mitochondrial RNA editing events have large effects on the driving forces of plant evolution. Additionally, 4 MTPTs and 686 NUMTs were detected in the mitochondrial and nuclear genomes of S. plumbizincicola, respectively. Additionally, we conducted further analyses on gene transfer, secondary structures of mitochondrial RNAs, and phylogenetic implications. Therefore, the findings presented here will be helpful for future investigations on plant mitogenomes.
Collapse
Affiliation(s)
- Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - De Bi
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Birong Liu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou 311400, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
5
|
Dey P, Sharma SK, Sarkar I, Ray SD, Pramod P, Kochiganti VHS, Quadros G, Rathore SS, Singh V, Singh RP. Complete mitogenome of endemic plum-headed parakeet Psittacula cyanocephala - characterization and phylogenetic analysis. PLoS One 2021; 16:e0241098. [PMID: 33836001 PMCID: PMC8034733 DOI: 10.1371/journal.pone.0241098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/01/2021] [Indexed: 11/19/2022] Open
Abstract
Psittacula cyanocephala is an endemic parakeet from the Indian sub-continent that is widespread in the illegal bird trade. Previous studies on Psittacula parakeets have highlighted taxonomic ambiguities, warranting studies to resolve the issues. Since the mitochondrial genome provides useful information concerning the species evolution and phylogenetics, we sequenced the complete mitogenome of P. cyanocephala using NGS, validated 38.86% of the mitogenome using Sanger Sequencing and compared it with other available whole mitogenomes of Psittacula. The complete mitogenome of the species was 16814 bp in length with 54.08% AT composition. P. cyanocephala mitogenome comprises of 13 protein-coding genes, 2 rRNAs and 22 tRNAs. P. cyanocephala mitogenome organization was consistent with other Psittacula mitogenomes. Comparative codon usage analysis indicated the role of natural selection on Psittacula mitogenomes. Strong purifying selection pressure was observed maximum on nad1 and nad4l genes. The mitochondrial control region of all Psittacula species displayed the ancestral avian CR gene order. Phylogenetic analyses revealed the Psittacula genus as paraphyletic nature, containing at least 4 groups of species within the same genus, suggesting its taxonomic reconsideration. Our results provide useful information for developing forensic tests to control the illegal trade of the species and scientific basis for phylogenetic revision of the genus Psittacula.
Collapse
Affiliation(s)
- Prateek Dey
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | - Sanjeev Kumar Sharma
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | - Indrani Sarkar
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | - Swapna Devi Ray
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | - Padmanabhan Pramod
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | | | - Goldin Quadros
- Wetland Ecology Division, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | | | - Vikram Singh
- Central University of Himachal Pradesh, Dharamshala, India
| | - Ram Pratap Singh
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
- Department of Life Science, Central University of South Bihar, Gaya, India
| |
Collapse
|
6
|
Jiang L, Peng L, Tang M, You Z, Zhang M, West A, Ruan Q, Chen W, Merilä J. Complete mitochondrial genome sequence of the Himalayan Griffon, Gyps himalayensis (Accipitriformes: Accipitridae): Sequence, structure, and phylogenetic analyses. Ecol Evol 2019; 9:8813-8828. [PMID: 31410282 PMCID: PMC6686361 DOI: 10.1002/ece3.5433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 11/12/2022] Open
Abstract
This is the first study to describe the mitochondrial genome of the Himalayan Griffon, Gyps himalayensis, which is an Old World vulture belonging to the family Accipitridae and occurring along the Himalayas and the adjoining Tibetan Plateau. Its mitogenome is a closed circular molecule 17,381 bp in size containing 13 protein-coding genes, 22 tRNA coding genes, two rRNA-coding genes, a control region (CR), and an extra pseudo-control region (CCR) that are conserved in most Accipitridae mitogenomes. The overall base composition of the G. himalayensis mitogenome is 24.55% A, 29.49% T, 31.59% C, and 14.37% G, which is typical for bird mitochondrial genomes. The alignment of the Accipitridae species control regions showed high levels of genetic variation and abundant AT content. At the 5' end of the domain I region, a long continuous poly-C sequence was found. Two tandem repeats were found in the pseudo-control regions. Phylogenetic analysis with Bayesian inference and maximum likelihood based on 13 protein-coding genes indicated that the relationships at the family level were (Falconidae + (Cathartidae + (Sagittariidae + (Accipitridae + Pandionidae))). In the Accipitridae clade, G. himalayensis is more closely related to Aegypius monachus than to Spilornis cheela. The complete mitogenome of G. himalayensis provides a potentially useful resource for further exploration of the taxonomic status and phylogenetic history of Gyps species.
Collapse
Affiliation(s)
- Lichun Jiang
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Liqing Peng
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Min Tang
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Zhangqiang You
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Min Zhang
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
| | - Andrea West
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVicAustralia
| | - Qiping Ruan
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
| | - Wei Chen
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty Biological & Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
7
|
Two new mitogenomes of Picidae (Aves, Piciformes): Sequence, structure and phylogenetic analyses. Int J Biol Macromol 2019; 133:683-692. [DOI: 10.1016/j.ijbiomac.2019.04.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
|
8
|
Chen W, Zhang C, Pan T, Liu W, Li K, Hu C, Chang Q. The mitochondrial genome of the Kentish Plover Charadrius alexandrinus (Charadriiformes: Charadriidae) and phylogenetic analysis of Charadrii. Genes Genomics 2018; 40:955-963. [PMID: 30155708 DOI: 10.1007/s13258-018-0703-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Abstract
The suborder Charadrii (Aves: Charadriiformes), one of the most species-rich radiations within shorebirds, which contains good source for studies of ecology, behaviour and evolution. The resources of mitogenome have rapidly accumulated in recent years due to the advanced genomic sequencing, while suborder Charadrii's mitogenome has not been well studied. The primary objective of this study was to determine the complete mitogenome sequence of Charadrius alexandrinus, and investigated the evolutionary relationship within Charadrii. The mitogenome of C. alexandrinus were generated by amplification of overlapping Polymerase Chain Reaction (PCR) fragments. In this study, we determined the complete mitogenome sequence of the Kentish Plover Charadrius alexandrinus, and comparative analysed 11 species to illustrate mitogenomes structure and investigated their evolutionary relationship within Charadrii. The Charadrii mitogenomes displayed moderate size variation, the mean size was 16,944 bp (SD = 182, n = 11), and most of the size variation due to mutations in the control region (CR). Nucleotide composition was consistently biased towards AT rich, and the A+T content also varies for each protein-coding genes. The variation in ATP8 and COIII was the highest and lowest respectively. The GC skew was always negative, with the ATP8 had higher value than other regions. The average uncorrected pairwise distances revealed heterogeneity of evolutionary rate for each gene, the COIII, COI and COII have slow evolutionary rate, whereas the gene of ATP8 has the relative fast rate. The highest value of Ks and Ka were ND1 and ATP8, and the ratios of Ka/Ks are lower than 0.27, indicating that they were under purifying selection. Phylogenomic analysis based on the complete mitochondrial genomes strongly supported the monophyly of the suborder Charadrii. This study improves our understanding of mitogenome structure and evolution, and providing further insights into phylogeny and taxonomy in Charadrii. In future, sequencing more mitogenomes from various taxonomic levels will significantly improve our understanding of phylogenetic relationships within Charadrii.
Collapse
Affiliation(s)
- Wan Chen
- College of Environment and Ecology, Jiangsu Open University (The City Vocational College of Jiangsu), Nanjing, 210036, Jiangsu, China.,Analytical and Testing Center, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Chenling Zhang
- Faculty of Life Science and Chemical Engineering, Jiangsu Second Normal University, Nanjing, 210013, Jiangsu, People's Republic of China
| | - Tao Pan
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230039, Anhui, People's Republic of China
| | - Wei Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Kexin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Chaochao Hu
- Analytical and Testing Center, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| | - Qing Chang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
9
|
Lee MY, Jeon HS, An J. Complete mitochondrial genome sequence of Emberiza sulphurata (Emberizidae: Emberiza). MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:111-112. [PMID: 33490442 PMCID: PMC7800306 DOI: 10.1080/23802359.2017.1289351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
The Japanese yellow bunting (Emberiza sulphurata) is considered to be an endangered species. Here, the complete mitochondrial genome of E. sulphurata (16,797 bp in length) was determined. The genome consists of 37 genes (13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes) and one control region (D-loop), and so is highly similar in architecture to the typical vertebrate mtDNA genome. The base composition of the mtDNA was A (29.9%), C (32.6%), G (14.5%), and T (23.0%), so the percentage of A and T (52.9%) was slightly higher than that of G and C. All the genes in E. sulphurata were encoded on the H-strand, except for the genes for the ND6 subunit and eight tRNAs, which were encoded on the L-stand. Phylogenetic analysis using Emberizidae mitogenomes revealed that E. sulphurata was grouped into the family Emberizidae and that E. spodocephala is the most closely related species.
Collapse
Affiliation(s)
- Mu-Yeong Lee
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Hey Sook Jeon
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Junghwa An
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| |
Collapse
|
10
|
Jiang L, Chen J, Wang P, Ren Q, Yuan J, Qian C, Hua X, Guo Z, Zhang L, Yang J, Wang Y, Zhang Q, Ding H, Bi D, Zhang Z, Wang Q, Chen D, Kan X. The Mitochondrial Genomes of Aquila fasciata and Buteo lagopus (Aves, Accipitriformes): Sequence, Structure and Phylogenetic Analyses. PLoS One 2015; 10:e0136297. [PMID: 26295156 PMCID: PMC4546579 DOI: 10.1371/journal.pone.0136297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/02/2015] [Indexed: 01/08/2023] Open
Abstract
The family Accipitridae is one of the largest groups of non-passerine birds, including 68 genera and 243 species globally distributed. In the present study, we determined the complete mitochondrial sequences of two species of accipitrid, namely Aquila fasciata and Buteo lagopus, and conducted a comparative mitogenome analysis across the family. The mitogenome length of A. fasciata and B. lagopus are 18,513 and 18,559 bp with an A + T content of 54.2% and 55.0%, respectively. For both the two accipitrid birds mtDNAs, obvious positive AT-skew and negative GC-skew biases were detected for all 12 PCGs encoded by the H strand, whereas the reverse was found in MT-ND6 encoded by the L strand. One extra nucleotide'C'is present at the position 174 of MT-ND3 gene of A. fasciata, which is not observed at that of B. lagopus. Six conserved sequence boxes in the Domain II, named boxes F, E, D, C, CSBa, and CSBb, respectively, were recognized in the CRs of A. fasciata and B. lagopus. Rates and patterns of mitochondrial gene evolution within Accipitridae were also estimated. The highest dN/dS was detected for the MT-ATP8 gene (0.32493) among Accipitridae, while the lowest for the MT-CO1 gene (0.01415). Mitophylogenetic analysis supported the robust monophyly of Accipitriformes, and Cathartidae was basal to the balance of the order. Moreover, we performed phylogenetic analyses using two other data sets (two mitochondrial loci, and combined nuclear and mitochondrial loci). Our results indicate that the subfamily Aquilinae and all currently polytypic genera of this subfamily are monophyletic. These two novel mtDNA data will be useful in refining the phylogenetic relationships and evolutionary processes of Accipitriformes.
Collapse
Affiliation(s)
- Lan Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, China
| | - Juan Chen
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Ping Wang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qiongqiong Ren
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jian Yuan
- The College of Life Sciences, Peking University, Beijing, China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Xinghong Hua
- The Ningguo Museum of Natural History, Ningguo, Anhui, China
| | - Zhichun Guo
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Lei Zhang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jianke Yang
- The Department of Medical Biology, Wannan medical college, Wuhu, Anhui, China
| | - Ying Wang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qin Zhang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Hengwu Ding
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - De Bi
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Zongmeng Zhang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qingqing Wang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Dongsheng Chen
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, China
| |
Collapse
|