1
|
Genomic inbreeding and runs of homozygosity analysis of indigenous cattle populations in southern China. PLoS One 2022; 17:e0271718. [PMID: 36006904 PMCID: PMC9409551 DOI: 10.1371/journal.pone.0271718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Runs of homozygosity (ROH) are continuous homozygous segments from the common ancestor of parents. Evaluating ROH pattern can help to understand inbreeding level and genetic basis of important traits. In this study, three representative cattle populations including Leiqiong cattle (LQC), Lufeng cattle (LFC) and Hainan cattle (HNC) were genotyped using the Illumina BovineHD SNPs array (770K) to assess ROH pattern at genome wide level. Totally, we identified 26,537 ROH with an average of 153 ROH per individual. The sizes of ROH ranged from 0.5 to 53.26Mb, and the average length was 1.03Mb. The average of FROH ranged from 0.10 (LQC) to 0.15 (HNC). Moreover, we identified 34 ROH islands (with frequency > 0.5) across genome. Based on these regions, we observed several breed-specific candidate genes related to adaptive traits. Several common genes related to immunity (TMEM173, MZB1 and SIL1), and heat stress (DNAJC18) were identified in all three populations. Three genes related to immunity (UGP2), development (PURA) and reproduction (VPS54) were detected in both HNC and LQC. Notably, we identified several breed-specific genes related to sperm development (BRDT and SPAG6) and heat stress (TAF7) in HNC, and immunity (CDC23 and NME5) and development (WNT87) in LFC. Our findings provided valuable insights into understanding the genomic homozygosity pattern and promoting the conservation of genetic resources of Chinese indigenous cattle.
Collapse
|
2
|
Hu Z, Cao J, Liu G, Zhang H, Liu X. Comparative Transcriptome Profiling of Skeletal Muscle from Black Muscovy Duck at Different Growth Stages Using RNA-seq. Genes (Basel) 2020; 11:genes11101228. [PMID: 33092100 PMCID: PMC7590229 DOI: 10.3390/genes11101228] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
In China, the production for duck meat is second only to that of chicken, and the demand for duck meat is also increasing. However, there is still unclear on the internal mechanism of regulating skeletal muscle growth and development in duck. This study aimed to identity candidate genes related to growth of duck skeletal muscle and explore the potential regulatory mechanism. RNA-seq technology was used to compare the transcriptome of skeletal muscles in black Muscovy ducks at different developmental stages (day 17, 21, 27, 31, and 34 of embryos and postnatal 6-month-olds). The SNPs and InDels of black Muscovy ducks at different growth stages were mainly in “INTRON”, “SYNONYMOUS_CODING”, “UTR_3_PRIME”, and “DOWNSTREAM”. The average number of AS in each sample was 37,267, mainly concentrated in TSS and TTS. Besides, a total of 19 to 5377 DEGs were detected in each pairwise comparison. Functional analysis showed that the DEGs were mainly involved in the processes of cell growth, muscle development, and cellular activities (junction, migration, assembly, differentiation, and proliferation). Many of DEGs were well known to be related to growth of skeletal muscle in black Muscovy duck, such as MyoG, FBXO1, MEF2A, and FoxN2. KEGG pathway analysis identified that the DEGs were significantly enriched in the pathways related to the focal adhesion, MAPK signaling pathway and regulation of the actin cytoskeleton. Some DEGs assigned to these pathways were potential candidate genes inducing the difference in muscle growth among the developmental stages, such as FAF1, RGS8, GRB10, SMYD3, and TNNI2. Our study identified several genes and pathways that may participate in the regulation of skeletal muscle growth in black Muscovy duck. These results should serve as an important resource revealing the molecular basis of muscle growth and development in duck.
Collapse
|
3
|
Wu L, Yang Y, Li B, Huang W, Wang X, Liu X, Meng Z, Xia J. First Genome-wide Association Analysis for Growth Traits in the Largest Coral Reef-Dwelling Bony Fishes, the Giant Grouper (Epinephelus lanceolatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:707-717. [PMID: 31392592 DOI: 10.1007/s10126-019-09916-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The giant grouper, Epinephelus lanceolatus, is the largest coral reef-dwelling bony fish species. However, despite extremely fast growth performance and the considerable economic importance in this species, its genetic regulation of growth remains unknown. Here, we performed the first genome-wide association study (GWAS) for five growth traits in 289 giant groupers using 42,323 single nucleotide polymorphisms (SNPs) obtained by genotyping-by-sequencing (GBS). We identified a total of 36 growth-related SNPs, of which 11 SNPs reached a genome-wide significance level. The phenotypic variance explained by these SNPs varied from 7.09% for body height to 18.42% for body length. Moreover, 22 quantitative trait loci (QTLs) for growth traits, including nine significant QTLs and 13 suggestive QTLs, were found on multiple chromosomes. Interestingly, the QTL (LG17: 6934451) was shared between body weight and body height, while two significant QTLs (LG7: 22596399 and LG15: 11877836) for body length were consistent with the associated regions of total length at the genome-wide suggestive level. Eight potential candidate genes close to the associated SNPs were selected for expression analysis, of which four genes (phosphatidylinositol transfer protein cytoplasmic 1, protein tyrosine phosphatase receptor type E, alpha/beta hydrolase domain-containing protein 17C, and vascular endothelial growth factor A-A) were differentially expressed and involved in metabolism, development, response stress, etc. This study improves our understanding of the complex genetic architecture of growth in the giant grouper. The results contribute to the selective breeding of grouper species and the conservation of coral reef fishes.
Collapse
Affiliation(s)
- Lina Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Yang Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Bijun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Wenhua Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Xi Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China.
| | - Junhong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| |
Collapse
|