1
|
Wells RG, Neilson LE, McHill AW, Hiller AL. Time-restricted eating in early-stage Huntington's disease: A 12-week interventional clinical trial protocol. PLoS One 2025; 20:e0319253. [PMID: 40131943 PMCID: PMC11936236 DOI: 10.1371/journal.pone.0319253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/26/2025] [Indexed: 03/27/2025] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder characterized by a variety of debilitating symptoms including abnormal motor control, cognitive impairment, and psychiatric disturbances. Despite significant efforts, efficacious treatments to alter the course of HD remain elusive, highlighting the need to explore new therapeutic strategies, including lifestyle changes that may delay the onset of symptoms and slow disease progression. Recent research indicates that time-restricted eating (TRE), a type of intermittent fasting where caloric intake is confined to a specific time window each day, may be beneficial in treating neurodegenerative diseases like HD. TRE has been found to enhance mitochondrial function, stimulate autophagy, lower oxidative stress, and improve cognitive performance. Although TRE has shown potential in HD animal models and non-HD populations, it has yet to be analyzed for safety, feasibility, and efficacy in persons with HD. Therefore, we propose a prospective interventional, open-label, single-arm, pilot study of 25 participants with late prodromal and early manifest HD to evaluate participant adherence to TRE diet - specifically, maintaining a 6-8-hour eating window every day for 12 weeks. Secondary measures will include pre- versus post-intervention assessment of body composition via bioelectrical impedance analysis, vital signs and safety labs, serum biomarkers of neurodegeneration, and standard HD behavioral, cognitive, and motor function clinical scales. Additional exploratory measures will evaluate sleep quality, physical activity, mood, dietary composition, and mitochondrial function. We expect that the diet will be safe, feasible, and may also improve biomarkers of disease progression in persons with HD. We anticipate this study will lay the foundation for future large-scale clinical trials to further evaluate the clinical efficacy of TRE in HD. This study has been registered on July 8, 2024 with ClinicalTrials.gov registration number NCT06490367 (https://clinicaltrials.gov/study/NCT06490367).
Collapse
Affiliation(s)
- Russell G. Wells
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Lee E. Neilson
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, United States of America
- Neurology and PADRECC VA Portland Health Care System, Portland, Oregon, United States of America
| | - Andrew W. McHill
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Amie L. Hiller
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, United States of America
- Neurology and PADRECC VA Portland Health Care System, Portland, Oregon, United States of America
| |
Collapse
|
2
|
Mousavi MA, Rezaei M, Pourhamzeh M, Salari M, Hossein-Khannazer N, Shpichka A, Nabavi SM, Timashev P, Vosough M. Translational Approach using Advanced Therapy Medicinal Products for Huntington's Disease. Curr Rev Clin Exp Pharmacol 2025; 20:14-31. [PMID: 38797903 DOI: 10.2174/0127724328300166240510071548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Current therapeutic approaches for Huntington's disease (HD) focus on symptomatic treatment. Therefore, the unavailability of efficient disease-modifying medicines is a significant challenge. Regarding the molecular etiology, targeting the mutant gene or advanced translational steps could be considered promising strategies. The evidence in gene therapy suggests various molecular techniques, including knocking down mHTT expression using antisense oligonucleotides and small interfering RNAs and gene editing with zinc finger proteins and CRISPR-Cas9-based techniques. Several post-transcriptional and post-translational modifications have also been proposed. However, the efficacy and long-term side effects of these modalities have yet to be verified. Currently, cell therapy can be employed in combination with conventional treatment and could be used for HD in which the structural and functional restoration of degenerated neurons can occur. Several animal models have been established recently to develop cell-based therapies using renewable cell sources such as embryonic stem cells, induced pluripotent stem cells, mesenchymal stromal cells, and neural stem cells. These models face numerous challenges in translation into clinics. Nevertheless, investigations in Advanced Therapy Medicinal Products (ATMPs) open a promising window for HD research and their clinical application. In this study, the ATMPs entry pathway in HD management was highlighted, and their advantages and disadvantages were discussed.
Collapse
Affiliation(s)
- Maryam Alsadat Mousavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maliheh Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Mehri Salari
- Department of Neurology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Sechenov University, Moscow, Russia
| | - Seyed Massood Nabavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83 Stockholm, Sweden
| |
Collapse
|
3
|
Sujkowski A, Ranxhi B, Bangash ZR, Chbihi ZM, Prifti MV, Qadri Z, Alam N, Todi SV, Tsou WL. Progressive degeneration in a new Drosophila model of spinocerebellar ataxia type 7. Sci Rep 2024; 14:14332. [PMID: 38906973 PMCID: PMC11192756 DOI: 10.1038/s41598-024-65172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of an uninterrupted polyglutamine (polyQ) repeat in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in fruit fly survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Bedri Ranxhi
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Zoya R Bangash
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Zachary M Chbihi
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Matthew V Prifti
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Zaina Qadri
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Nadir Alam
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA.
| |
Collapse
|
4
|
Iizuka Y, Katano-Toki A, Hayashi F, Fujioka J, Takahashi H, Nakamura K. Exogenous polyserine fibrils change membrane properties of phosphatidylcholine-liposome and red blood cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184331. [PMID: 38718958 DOI: 10.1016/j.bbamem.2024.184331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
The causative genes for neurodegenerative polyglutamine (polyQ) diseases produce homopolymeric polyglutamine (polyQ), polyserine (polyS), polyalanine (polyA), polycysteine (polyC), and polyleucine (polyL) sequences by repeat-associated non-AUG (RAN) translation. The cytotoxicity of the intracellular polyQ and RAN products has been extensively investigated. However, little is known about the toxicity of the extracellular polyQ and RAN products on the membranes of viable cells. Because polyQ aggregates induce a deflated morphology of a model membrane, we hypothesized that extracellular polyQ and RAN products might affect the membrane properties of viable cells. In this study, we demonstrated that exogenous polyS fibrils but not polyS or polyQ non-fibril aggregates altered the thermal phase transition behavior of a model membrane composed of a phosphatidylcholine bilayer using differential scanning calorimetry. PolyS fibrils induced morphological changes in viable red blood cells (RBCs). However, both polyS and polyQ non-fibril aggregates had no effects on RBCs. These results highlight the possibility that extracellular fibrils generated from RAN products may alter the properties of neuronal cell membranes, which may contribute to changes in the brain pathology.
Collapse
Affiliation(s)
- Yutaro Iizuka
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akiko Katano-Toki
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Fumio Hayashi
- Center for Instrumental Analysis, Organization for Promotion of Research and University Industry Collaboration, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Jun Fujioka
- Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hiroshi Takahashi
- Biophysics Laboratory, Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, 4-2, Aramaki, Maebashi, Gunma 371-8510, Japan.
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
5
|
Wells RG, Neilson LE, McHill AW, Hiller AL. Dietary fasting and time-restricted eating in Huntington's disease: therapeutic potential and underlying mechanisms. Transl Neurodegener 2024; 13:17. [PMID: 38561866 PMCID: PMC10986006 DOI: 10.1186/s40035-024-00406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder caused by aggregation of the mutant huntingtin (mHTT) protein, resulting from a CAG repeat expansion in the huntingtin gene HTT. HD is characterized by a variety of debilitating symptoms including involuntary movements, cognitive impairment, and psychiatric disturbances. Despite considerable efforts, effective disease-modifying treatments for HD remain elusive, necessitating exploration of novel therapeutic approaches, including lifestyle modifications that could delay symptom onset and disease progression. Recent studies suggest that time-restricted eating (TRE), a form of intermittent fasting involving daily caloric intake within a limited time window, may hold promise in the treatment of neurodegenerative diseases, including HD. TRE has been shown to improve mitochondrial function, upregulate autophagy, reduce oxidative stress, regulate the sleep-wake cycle, and enhance cognitive function. In this review, we explore the potential therapeutic role of TRE in HD, focusing on its underlying physiological mechanisms. We discuss how TRE might enhance the clearance of mHTT, recover striatal brain-derived neurotrophic factor levels, improve mitochondrial function and stress-response pathways, and synchronize circadian rhythm activity. Understanding these mechanisms is critical for the development of targeted lifestyle interventions to mitigate HD pathology and improve patient outcomes. While the potential benefits of TRE in HD animal models are encouraging, future comprehensive clinical trials will be necessary to evaluate its safety, feasibility, and efficacy in persons with HD.
Collapse
Affiliation(s)
- Russell G Wells
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Lee E Neilson
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Neurology and PADRECC VA Portland Health Care System, Portland, OR, 97239, USA
| | - Andrew W McHill
- Sleep, Chronobiology and Health Laboratory, School of Nursing, Oregon Health & Science University, Portland, OR, 97239, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, OR, 97239, USA
| | - Amie L Hiller
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Neurology and PADRECC VA Portland Health Care System, Portland, OR, 97239, USA
| |
Collapse
|
6
|
Ates G, Taguchi T, Maher P. CMS121 Partially Attenuates Disease Progression in Mouse Models of Huntington's Disease. Mol Neurobiol 2024; 61:2165-2175. [PMID: 37864765 PMCID: PMC11191676 DOI: 10.1007/s12035-023-03711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
There are currently no drugs that meaningfully slow down the progression of Huntington's disease (HD). Moreover, drug candidates against a single molecular target have not had significant success. Therefore, a different approach to HD drug discovery is needed. Previously we showed that the flavonol fisetin is efficacious in mouse and fly models of HD (Hum. Mol. Gen. 20:261, 2011). It is also effective in animal models of Alzheimer's disease (AD), ischemic stroke, and the CNS complications of diabetes, all of which share some pathological features with HD. Potent derivatives of fisetin with improved pharmacology were made that maintain its multiple biological activities (J. Med. Chem. 55:378, 2012). From 160 synthetic fisetin derivatives, one, CMS121, was selected for further study in the context of HD based on pharmacological parameters and its efficacy in animal models of AD. Both R6/2 and YAC128 mouse models of HD were used in these studies. We examined motor function using multiple assays as well as survival. In the R6/2 mice, we also looked at the effects of CMS121 on striatal gene expression. In both models, we found a slowing of motor dysfunction and an increase in median life span. Interestingly, in the YAC128 mice, the effects on the slowing in motor function loss became increasingly more pronounced as the mice aged. CMS121 also reduced HD-driven changes in the expression of genes associated with the proteasome and oxidative phosphorylation. Overall, these results suggest that CMS121 could provide some benefits for HD patients, particularly with regard to increasing health span.
Collapse
Affiliation(s)
- Gamze Ates
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
- Vrije Universiteit Brussel, Ixelles, Belgium
| | - Taketo Taguchi
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Pamela Maher
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
7
|
Gushi S, Balis V. Mitochondrial Inherited Disorders and their Correlation with Neurodegenerative Diseases. Endocr Metab Immune Disord Drug Targets 2024; 24:381-393. [PMID: 37937560 DOI: 10.2174/0118715303250271231018103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
Mitochondria are essential organelles for the survival of a cell because they produce energy. The cells that need more mitochondria are neurons because they perform a variety of tasks that are necessary to support brain homeostasis. The build-up of abnormal proteins in neurons, as well as their interactions with mitochondrial proteins, or MAM proteins, cause serious health issues. As a result, mitochondrial functions, such as mitophagy, are impaired, resulting in the disorders described in this review. They are also due to mtDNA mutations, which alter the heritability of diseases. The topic of disease prevention, as well as the diagnosis, requires further explanation and exploration. Finally, there are treatments that are quite promising, but more detailed research is needed.
Collapse
Affiliation(s)
- Sofjana Gushi
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| | - Vasileios Balis
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| |
Collapse
|
8
|
Akyol S, Ashrafi N, Yilmaz A, Turkoglu O, Graham SF. Metabolomics: An Emerging "Omics" Platform for Systems Biology and Its Implications for Huntington Disease Research. Metabolites 2023; 13:1203. [PMID: 38132886 PMCID: PMC10744751 DOI: 10.3390/metabo13121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
Huntington's disease (HD) is a progressive, fatal neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. The precise mechanisms of HD progression are poorly understood; however, it is known that there is an expansion of the trinucleotide cytosine-adenine-guanine (CAG) repeat in the Huntingtin gene. Important new strategies are of paramount importance to identify early biomarkers with predictive value for intervening in disease progression at a stage when cellular dysfunction has not progressed irreversibly. Metabolomics is the study of global metabolite profiles in a system (cell, tissue, or organism) under certain conditions and is becoming an essential tool for the systemic characterization of metabolites to provide a snapshot of the functional and pathophysiological states of an organism and support disease diagnosis and biomarker discovery. This review briefly highlights the historical progress of metabolomic methodologies, followed by a more detailed review of the use of metabolomics in HD research to enable a greater understanding of the pathogenesis, its early prediction, and finally the main technical platforms in the field of metabolomics.
Collapse
Affiliation(s)
- Sumeyya Akyol
- NX Prenatal Inc., 4350 Brownsboro Road, Louisville KY 40207, USA;
| | - Nadia Ashrafi
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
| | - Ali Yilmaz
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| | - Onur Turkoglu
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
| | - Stewart F. Graham
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| |
Collapse
|
9
|
Sujkowski AL, Ranxhi B, Prifti MV, Alam N, Todi SV, Tsou WL. Progressive degeneration in a new Drosophila model of Spinocerebellar Ataxia type 7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566106. [PMID: 37986914 PMCID: PMC10659390 DOI: 10.1101/2023.11.07.566106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of polyglutamine (polyQ) in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.
Collapse
|
10
|
Yuan WQ, Huang WP, Jiang YC, Xu H, Duan CS, Chen NH, Liu YJ, Fu XM. The function of astrocytes and their role in neurological diseases. Eur J Neurosci 2023; 58:3932-3961. [PMID: 37831013 DOI: 10.1111/ejn.16160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Astrocytes have countless links with neurons. Previously, astrocytes were only considered a scaffold of neurons; in fact, astrocytes perform a variety of functions, including providing support for neuronal structures and energy metabolism, offering isolation and protection and influencing the formation, function and elimination of synapses. Because of these functions, astrocytes play an critical role in central nervous system (CNS) diseases. The regulation of the secretiory factors, receptors, channels and pathways of astrocytes can effectively inhibit the occurrence and development of CNS diseases, such as neuromyelitis optica (NMO), multiple sclerosis, Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease. The expression of aquaporin 4 in AS is directly related to NMO and indirectly involved in the clearance of Aβ and tau proteins in AD. Connexin 43 has a bidirectional effect on glutamate diffusion at different stages of stroke. Interestingly, astrocytes reduce the occurrence of PD through multiple effects such as secretion of related factors, mitochondrial autophagy and aquaporin 4. Therefore, this review is focused on the structure and function of astrocytes and the correlation between astrocytes and CNS diseases and drug treatment to explore the new functions of astrocytes with the astrocytes as the target. This, in turn, would provide a reference for the development of new drugs to protect neurons and promote the recovery of nerve function.
Collapse
Affiliation(s)
- Wen-Qin Yuan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wei-Peng Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Pharmacy, Minzu University of China, Beijing, China
| | - Yang-Chao Jiang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hao Xu
- College of Economics and Management, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chong-Shen Duan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying-Jiao Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiao-Mei Fu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
11
|
Stoka V, Vasiljeva O, Nakanishi H, Turk V. The Role of Cysteine Protease Cathepsins B, H, C, and X/Z in Neurodegenerative Diseases and Cancer. Int J Mol Sci 2023; 24:15613. [PMID: 37958596 PMCID: PMC10650516 DOI: 10.3390/ijms242115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Papain-like cysteine proteases are composed of 11 human cysteine cathepsins, originally located in the lysosomes. They exhibit broad specificity and act as endopeptidases and/or exopeptidases. Among them, only cathepsins B, H, C, and X/Z exhibit exopeptidase activity. Recently, cysteine cathepsins have been found to be present outside the lysosomes and often participate in various pathological processes. Hence, they have been considered key signalling molecules. Their potentially hazardous proteolytic activities are tightly regulated. This review aims to discuss recent advances in understanding the structural aspects of these four cathepsins, mechanisms of their zymogen activation, regulation of their activities, and functional aspects of these enzymes in neurodegeneration and cancer. Neurodegenerative effects have been evaluated, particularly in Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and neuropsychiatric disorders. Cysteine cathepsins also participate in tumour progression and metastasis through the overexpression and secretion of proteases, which trigger extracellular matrix degradation. To our knowledge, this is the first review to provide an in-depth analysis regarding the roles of cysteine cathepsins B, H, C, and X in neurodegenerative diseases and cancer. Further advances in understanding the functions of cysteine cathepsins in these conditions will result in the development of novel, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- CytomX Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Laurindo LF, de Carvalho GM, de Oliveira Zanuso B, Figueira ME, Direito R, de Alvares Goulart R, Buglio DS, Barbalho SM. Curcumin-Based Nanomedicines in the Treatment of Inflammatory and Immunomodulated Diseases: An Evidence-Based Comprehensive Review. Pharmaceutics 2023; 15:pharmaceutics15010229. [PMID: 36678859 PMCID: PMC9861982 DOI: 10.3390/pharmaceutics15010229] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Curcumin (CUR) is a polyphenol extracted from the rhizome of Curcuma longa that possesses potent anti-inflammatory and antioxidant potential. Despite CUR's numerous beneficial effects on human health, it has limitations, such as poor absorption. Nano-based drug delivery systems have recently been applied to improve CUR's solubility and bioavailability and potentialize its health effects. This review investigated the effects of different CUR-based nanomedicines on inflammatory and immunomodulated diseases. PUBMED, EMBASE, COCHRANE, and GOOGLE SCHOLAR databases were searched, and the Scale for Assessment of Narrative Review Articles (SANRA) was used for quality assessment and PRISMA guidelines. Overall, 66 studies were included comprising atherosclerosis, rheumatoid arthritis (RA), Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), Huntington's disease (HD), inflammatory bowel diseases (IBD), psoriasis, liver fibrosis, epilepsy, and COVID-19. The available scientific studies show that there are many known nanoformulations with curcumin. They can be found in nanosuspensions, nanoparticles, nanoemulsions, solid lipid particles, nanocapsules, nanospheres, and liposomes. These formulations can improve CUR bioavailability and can effectively be used as adjuvants in several inflammatory and immune-mediated diseases such as atheroma plaque formation, RA, dementia, AD, PD, MS, IBD, psoriasis, epilepsy, COVID-19, and can be used as potent anti-fibrotic adjuvants in fibrotic liver disease.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Gabriel Magno de Carvalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Bárbara de Oliveira Zanuso
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Maria Eduardo Figueira
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Daiene Santos Buglio
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília, São Paulo 17500-000, Brazil
- Correspondence: ; Tel.: +55-14-99655-3190
| |
Collapse
|
13
|
Okumura H, Kawasaki T, Nakamura K. Probing protein misfolding and dissociation with an infrared free-electron laser. Methods Enzymol 2022; 679:65-96. [PMID: 36682873 DOI: 10.1016/bs.mie.2022.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Misfolding is observed in the mutant proteins that are causative for neurodegenerative disorders such as polyglutamine diseases. These proteins are prone to aggregate in the cytoplasm and nucleus of cells. To reproduce cells with the aggregated proteins, gene expression system is usually applied, in which the expression construct having the mutated DNA sequence of the interest is transfected into cells. The transfected DNA is finally converted into the mutant protein, which is gradually aggregated in the cells. In addition, a simple method to prepare the cells having aggregates inside has been recently applied. Peptides were first aggregated by incubating them in water. The aggregates are spontaneously taken up by cells because aggregated proteins generally transfer between cells. Peptides with different degrees of aggregation can be made by changing the incubation times and temperatures, which enables to examine contribution of aggregation to the toxicity to the recipient cells. Moreover, such cells can be used for therapeutic researches of diseases in which aggregates are involved. In this chapter, we show methods to induce aggregation of peptides. The functional analyses of the cells with aggregates are also described. Then, experimental dissociation of the aggregates produced using this method by mid infrared free electron laser irradiation and its theoretical support by molecular dynamics simulation are introduced as the therapeutic research for neurodegenerative disorders.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Takayasu Kawasaki
- Accelerator Laboratory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan.
| |
Collapse
|
14
|
Owada R, Kakuta Y, Yoshida K, Mitsui S, Nakamura K. Conditioned medium from BV2 microglial cells having polyleucine specifically alters startle response in mice. Sci Rep 2022; 12:18718. [PMID: 36333586 PMCID: PMC9636192 DOI: 10.1038/s41598-022-23571-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Repeat-associated non-AUG translation (RAN translation) is observed in transcripts that are causative for polyglutamine (polyQ) diseases and generates proteins with mono amino acid tracts such as polyalanine (polyA), polyleucine (polyL) and polyserine (polyS) in neurons, astrocytes and microglia. We have previously shown that microglia with aggregated polyQ led to defective differentiation and degeneration of neuron-like cells. However, it has not been determined whether only microglia containing a specific RAN product, but not other RAN products, is harmful in vitro and in vivo. Here we show that polyL-incorporating microglia specifically led to altered startle response in mice. Aggregated polyA, polyS and polyL induced aberrant differentiation of microglia-like BV2 cells. Differentiated PC12 cells treated with conditioned medium (CM) of polyS- and polyL- but not polyA-incorporating microglia-like BV2 cells showed retraction of neurites and loss of branch of neurites. Injection of the polyL-CM, but not polyA-CM and polyS-CM, into the lateral ventricle lowered startle response in mice. Consistently, polyL induced the highest expression of CD68 in BV2 cells. The lowered startle response was replicated in mice given the polyL-CM in the caudal pontine reticular nucleus (PnC), the key region of startle response. Thus, endogenous RAN proteins having polyL derived from polyQ diseases-causative genes in microglia might specifically impair startle response.
Collapse
Affiliation(s)
- Ryuji Owada
- grid.256642.10000 0000 9269 4097Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Yohei Kakuta
- grid.256642.10000 0000 9269 4097Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Kosuke Yoshida
- grid.256642.10000 0000 9269 4097Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Shinichi Mitsui
- grid.256642.10000 0000 9269 4097Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Kazuhiro Nakamura
- grid.256642.10000 0000 9269 4097Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511 Japan
| |
Collapse
|
15
|
DeLisi LE. Commentary on whether progressive brain change underlies the pathology of schizophrenia: Should this even be debated? Schizophr Res 2022; 244:18-20. [PMID: 35567869 DOI: 10.1016/j.schres.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lynn E DeLisi
- Attending Psychiatrist and Director of Faculty Affairs, Department of Psychiatry, Cambridge Health Alliance, Professor of Psychiatry, Harvard Medical School, Cambridge, MA, United States of America.
| |
Collapse
|
16
|
Matz OC, Spocter M. The Effect of Huntington’s Disease on the Basal Nuclei: A Review. Cureus 2022; 14:e24473. [PMID: 35651462 PMCID: PMC9132741 DOI: 10.7759/cureus.24473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/14/2022] Open
Abstract
Huntington’s disease is an autosomal dominant trinucleotide repeat disorder that causes the progressive degeneration of the basal nuclei. This degeneration leads to clinical symptoms affecting voluntary movement, cognitive impairment, and psychiatric disorders. The patient affected by this disease demonstrates anticipation, meaning that even though there is normal embryological development, the signs and symptoms appear at an earlier age as the gene is continually passed throughout subsequent generations. The degeneration occurs due to the accumulation of the protein Huntingtin that destroys the medium spiny neurons located in the caudate and putamen, collectively termed the striatum. Four pathways converge onto the striatum known as the “input” center. These consist of the motor loop, oculomotor loop, association loop, and limbic loop. In each of these loops, the striatum maintains an inhibitory gamma-aminobutyric acid (GABA)-ergic function. The imbalance of the inhibitory versus excitatory input directly relates to the symptoms seen in Huntington’s disease such as the inability to control voluntary movements termed chorea, the inability to control voluntary saccadic ocular movements, the cognitive inability to plan and determine the direction of movement, and the inability to control the emotional and motivational aspects of the movement. There is currently no cure for Huntington’s disease but there is a symptomatic treatment for the chorea and psychiatric conditions. Further research is being done to determine the pathophysiology behind the Hungtintin protein to allow for a targeted treatment regimen while also looking into reliable biomarkers for the progression of Huntington’s disease.
Collapse
|
17
|
Sujkowski A, Richardson K, Prifti MV, Wessells RJ, Todi SV. Endurance exercise ameliorates phenotypes in Drosophila models of spinocerebellar ataxias. eLife 2022; 11:e75389. [PMID: 35170431 PMCID: PMC8871352 DOI: 10.7554/elife.75389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/15/2022] [Indexed: 11/24/2022] Open
Abstract
Endurance exercise is a potent intervention with widespread benefits proven to reduce disease incidence and impact across species. While endurance exercise supports neural plasticity, enhanced memory, and reduced neurodegeneration, less is known about the effect of chronic exercise on the progression of movement disorders such as ataxias. Here, we focused on three different types of ataxias, spinocerebellar ataxias type (SCAs) 2, 3, and 6, belonging to the polyglutamine (polyQ) family of neurodegenerative disorders. In Drosophila models of these SCAs, flies progressively lose motor function. In this study, we observe marked protection of speed and endurance in exercised SCA2 flies and modest protection in exercised SCA6 models, with no benefit to SCA3 flies. Causative protein levels are reduced in SCA2 flies after chronic exercise, but not in SCA3 models, linking protein levels to exercise-based benefits. Further mechanistic investigation indicates that the exercise-inducible protein, Sestrin (Sesn), suppresses mobility decline and improves early death in SCA2 flies, even without exercise, coincident with disease protein level reduction and increased autophagic flux. These improvements partially depend on previously established functions of Sesn that reduce oxidative damage and modulate mTOR activity. Our study suggests differential responses of polyQ SCAs to exercise, highlighting the potential for more extensive application of exercise-based therapies in the prevention of polyQ neurodegeneration. Defining the mechanisms by which endurance exercise suppresses polyQ SCAs will open the door for more effective treatment for these diseases.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Pharmacology, Wayne State University School of MedicineDetroitUnited States
| | - Kristin Richardson
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Matthew V Prifti
- Department of Pharmacology, Wayne State University School of MedicineDetroitUnited States
| | - Robert J Wessells
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of MedicineDetroitUnited States
- Department of Neurology, Wayne State University School of MedicineDetroitUnited States
| |
Collapse
|
18
|
Vodičková A, Koren SA, Wojtovich AP. Site-specific mitochondrial dysfunction in neurodegeneration. Mitochondrion 2022; 64:1-18. [PMID: 35182728 PMCID: PMC9035127 DOI: 10.1016/j.mito.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Mitochondria are essential for neuronal survival and mitochondrial dysfunction is a hallmark of neurodegeneration. The loss in mitochondrial energy production, oxidative stress, and changes in calcium handling are associated with neurodegenerative diseases; however, different sites and types of mitochondrial dysfunction are linked to distinct neuropathologies. Understanding the causal or correlative relationship between changes in mitochondria and neuropathology will lead to new therapeutic strategies. Here, we summarize the evidence of site-specific mitochondrial dysfunction and mitochondrial-related clinical trials for neurodegenerative diseases. We further discuss potential therapeutic approaches, such as mitochondrial transplantation, restoration of mitochondrial function, and pharmacological alleviation of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anežka Vodičková
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Shon A Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
19
|
Owada R, Mitsui S, Nakamura K. Exogenous polyserine and polyleucine are toxic to recipient cells. Sci Rep 2022; 12:1685. [PMID: 35102230 PMCID: PMC8803884 DOI: 10.1038/s41598-022-05720-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Repeat-associated non-AUG (RAN) translation of mRNAs/transcripts responsible for polyglutamine (polyQ) diseases may generate peptides containing different mono amino acid tracts such as polyserine (polyS) and polyleucine (polyL). The propagation of aggregated polyQ from one cell to another is also an intriguing feature of polyQ proteins. However, whether the RAN translation-related polyS and polyL have the ability to propagate remains unclear, and if they do, whether the exogenous polyS and polyL exert toxicity on the recipient cells is also not known yet. In the present study, we found that aggregated polyS and polyL peptides spontaneously enter neuron-like cells and astrocytes in vitro. Aggregated polyS led to the degeneration of the differentiated neuron-like cultured cells. Likewise, the two types of aggregates taken up by astrocytes induced aberrant differentiation and cell death in vitro. Furthermore, injection of each of the two types of aggregates into the ventricles of adult mice resulted in their behavioral changes. The polyS-injected mice showed extensive vacuolar degeneration in the brain. Thus, the RAN translation-related proteins containing polyS and polyL have the potential to propagate and the proteins generated by all polyQ diseases might exert universal toxicity in the recipient cells.
Collapse
Affiliation(s)
- Ryuji Owada
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Shinichi Mitsui
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
20
|
Gong M, Tu M, Sun H, Li L, Zhu L, Li H, Zhao Z, Li S. Design, Synthesis, and Structure-Activity Relationship Study of Potent MAPK11 Inhibitors. Molecules 2021; 27:molecules27010203. [PMID: 35011435 PMCID: PMC8746797 DOI: 10.3390/molecules27010203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 11/30/2022] Open
Abstract
Huntington’s disease (HD) is a rare single-gene neurodegenerative disease, which can only be treated symptomatically. Currently, there are no approved drugs for HD on the market. Studies have found that MAPK11 can serve as a potential therapeutic target for HD. Regrettably, no MAPK11 small molecule inhibitors have been approved at present. This paper presents three series of compounds that were designed and synthesized based on the structure of skepinone-L, a known MAPK14 inhibitor. Among the synthesized compounds, 13a and 13b, with IC50 values of 6.40 nM and 4.20 nM, respectively, displayed the best inhibitory activities against MAPK11. Furthermore, the structure–activity relationship (SAR) is discussed in detail, which is constructive in optimizing the MAPK11 inhibitors for better activity and effect against HD.
Collapse
Affiliation(s)
- Mengdie Gong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (M.G.); (M.T.); (H.S.); (L.L.); (L.Z.); (H.L.)
| | - Mingyan Tu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (M.G.); (M.T.); (H.S.); (L.L.); (L.Z.); (H.L.)
| | - Hongxia Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (M.G.); (M.T.); (H.S.); (L.L.); (L.Z.); (H.L.)
| | - Lu Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (M.G.); (M.T.); (H.S.); (L.L.); (L.Z.); (H.L.)
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (M.G.); (M.T.); (H.S.); (L.L.); (L.Z.); (H.L.)
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (M.G.); (M.T.); (H.S.); (L.L.); (L.Z.); (H.L.)
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330096, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (M.G.); (M.T.); (H.S.); (L.L.); (L.Z.); (H.L.)
- Correspondence: (Z.Z.); (S.L.)
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (M.G.); (M.T.); (H.S.); (L.L.); (L.Z.); (H.L.)
- Correspondence: (Z.Z.); (S.L.)
| |
Collapse
|
21
|
Iizuka Y, Owada R, Kawasaki T, Hayashi F, Sonoyama M, Nakamura K. Toxicity of internalized polyalanine to cells depends on aggregation. Sci Rep 2021; 11:23441. [PMID: 34873226 PMCID: PMC8648788 DOI: 10.1038/s41598-021-02889-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
In polyalanine (PA) diseases, the disease-causing transcription factors contain an expansion of alanine repeats. While aggregated proteins that are responsible for the pathogenesis of neurodegenerative disorders show cell-to-cell propagation and thereby exert toxic effects on the recipient cells, whether this is also the case with expanded PA has not been studied. It is also not known whether the internalized PA is toxic to recipient cells based on the degree of aggregation. In this study, we therefore prepared different degrees of aggregation of a peptide having 13 alanine repeats without flanking sequences of PA disease-causative proteins (13A). The aggregated 13A was spontaneously taken up by neuron-like cultured cells. Functionally, strong aggregates but not weak aggregates displayed a deficit in neuron-like differentiation in vitro. Moreover, the injection of strong but not weak 13A aggregates into the ventricle of mice during the neonatal stage led to enhanced spontaneous motor activity later in life. Thus, PA in the extracellular space has the potential to enter adjacent cells, and may exert toxicity depending on the degree of aggregation.
Collapse
Affiliation(s)
- Yutaro Iizuka
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ryuji Owada
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takayasu Kawasaki
- Accelerator Laboratory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Fumio Hayashi
- Center for Instrumental Analysis, Organization for Promotion of Research and University Industry Collaboration, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Masashi Sonoyama
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.,Gunma University Initiative for Advanced Research (GIAR), Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.,Gunma University Center for Food Science and Wellness (GUCFW), Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
22
|
Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021; 22:12499. [PMID: 34830381 PMCID: PMC8617801 DOI: 10.3390/ijms222212499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of CAG trinucleotide repeat located in the exon 1 of Huntingtin (HTT) gene in human chromosome 4. The HTT protein is ubiquitously expressed in the brain. Specifically, mutant HTT (mHTT) protein-mediated toxicity leads to a dramatic degeneration of the striatum among many regions of the brain. HD symptoms exhibit a major involuntary movement followed by cognitive and psychiatric dysfunctions. In this review, we address the conventional role of wild type HTT (wtHTT) and how mHTT protein disrupts the function of medium spiny neurons (MSNs). We also discuss how mHTT modulates epigenetic modifications and transcriptional pathways in MSNs. In addition, we define how non-cell autonomous pathways lead to damage and death of MSNs under HD pathological conditions. Lastly, we overview therapeutic approaches for HD. Together, understanding of precise neuropathological mechanisms of HD may improve therapeutic approaches to treat the onset and progression of HD.
Collapse
Affiliation(s)
- Chaebin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Seung-Hye Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Inyoung Chang
- Department of Biology, Boston University, Boston, MA 02215, USA;
| | - Junghee Lee
- Boston University Alzheimer’s Disease Research Center, Boston University, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| |
Collapse
|
23
|
Johnson SL, Libohova K, Blount JR, Sujkowski AL, Prifti MV, Tsou WL, Todi SV. Targeting the VCP-binding motif of ataxin-3 improves phenotypes in Drosophila models of Spinocerebellar Ataxia Type 3. Neurobiol Dis 2021; 160:105516. [PMID: 34563642 PMCID: PMC8693084 DOI: 10.1016/j.nbd.2021.105516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
Of the family of polyglutamine (polyQ) neurodegenerative diseases, Spinocerebellar Ataxia Type 3 (SCA3) is the most common. Like other polyQ diseases, SCA3 stems from abnormal expansions in the CAG triplet repeat of its disease gene resulting in elongated polyQ repeats within its protein, ataxin-3. Various ataxin-3 protein domains contribute to its toxicity, including the valosin-containing protein (VCP)-binding motif (VBM). We previously reported that VCP, a homo-hexameric protein, enhances pathogenic ataxin-3 aggregation and exacerbates its toxicity. These findings led us to explore the impact of targeting the SCA3 protein by utilizing a decoy protein comprising the N-terminus of VCP (N-VCP) that binds ataxin-3's VBM. The notion was that N-VCP would reduce binding of ataxin-3 to VCP, decreasing its aggregation and toxicity. We found that expression of N-VCP in Drosophila melanogaster models of SCA3 ameliorated various phenotypes, coincident with reduced ataxin-3 aggregation. This protective effect was specific to pathogenic ataxin-3 and depended on its VBM. Increasing the amount of N-VCP resulted in further phenotype improvement. Our work highlights the protective potential of targeting the VCP-ataxin-3 interaction in SCA3, a key finding in the search for therapeutic opportunities for this incurable disorder.
Collapse
Affiliation(s)
- Sean L Johnson
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kozeta Libohova
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jessica R Blount
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Alyson L Sujkowski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Matthew V Prifti
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
24
|
Marquette A, Aisenbrey C, Bechinger B. Membrane Interactions Accelerate the Self-Aggregation of Huntingtin Exon 1 Fragments in a Polyglutamine Length-Dependent Manner. Int J Mol Sci 2021; 22:ijms22136725. [PMID: 34201610 PMCID: PMC8268948 DOI: 10.3390/ijms22136725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/04/2022] Open
Abstract
The accumulation of aggregated protein is a typical hallmark of many human neurodegenerative disorders, including polyglutamine-related diseases such as chorea Huntington. Misfolding of the amyloidogenic proteins gives rise to self-assembled complexes and fibres. The huntingtin protein is characterised by a segment of consecutive glutamines which, when exceeding ~ 37 residues, results in the occurrence of the disease. Furthermore, it has also been demonstrated that the 17-residue amino-terminal domain of the protein (htt17), located upstream of this polyglutamine tract, strongly correlates with aggregate formation and pathology. Here, we demonstrate that membrane interactions strongly accelerate the oligomerisation and β-amyloid fibril formation of htt17-polyglutamine segments. By using a combination of biophysical approaches, the kinetics of fibre formation is investigated and found to be strongly dependent on the presence of lipids, the length of the polyQ expansion, and the polypeptide-to-lipid ratio. Finally, the implications for therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Arnaud Marquette
- Chemistry Institute UMR7177, University of Strasbourg/CNRS, 67000 Strasbourg, France; (A.M.); (C.A.)
| | - Christopher Aisenbrey
- Chemistry Institute UMR7177, University of Strasbourg/CNRS, 67000 Strasbourg, France; (A.M.); (C.A.)
| | - Burkhard Bechinger
- Chemistry Institute UMR7177, University of Strasbourg/CNRS, 67000 Strasbourg, France; (A.M.); (C.A.)
- Insitut Universitaire de France, 75005 Paris, France
- Correspondence:
| |
Collapse
|
25
|
Chen S, Liang T, Xue T, Xue S, Xue Q. Pridopidine for the Improvement of Motor Function in Patients With Huntington's Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Neurol 2021; 12:658123. [PMID: 34054700 PMCID: PMC8159155 DOI: 10.3389/fneur.2021.658123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Huntington's disease (HD) is a progressive neurodegenerative disorder. Generally, it is characterized by deficits in cognition, behavior, and movement. Recent studies have shown that pridopidine is a potential and effective drug candidate for the treatment of HD. In the present study, we performed a meta-analysis to evaluate the efficacy and safety of pridopidine in HD. Methods: The MEDLINE, EMBASE, CENTRAL, and Clinicaltrials.gov databases were searched for randomized controlled trials (RCTs) which had that evaluated pridopidine therapy in HD patients. Results: We pooled data from 1,119 patients across four RCTs. Patients in the pridopidine group had a significantly lower Unified Huntington's Disease Rating Scale (UHDRS)-modified Motor Score (mMS) (MD −0.79, 95% CI = −1.46 to −0.11, p = 0.02) than those in the placebo group. Additionally, no differences were observed in the UHDRS-Total Motor Score (TMS) (MD −0.91. 95% CI = −2.03 to 0.21, p = 0.11) or adverse events (RR 1.06, 95% CI = 0.96 to 1.16, p = 0.24) in the pridopidine and placebo groups. In the subgroup analysis, the short-term (≤12 weeks) and long-term (>12 weeks) subgroups exhibited similar efficacy and safety with no statistical significance in TMS, mMS, or adverse events. However, TMS (MD −1.50, 95% CI = −2.87 to −0.12, p = 0.03) and mMS (MD −1.03, 95% CI = −1.87 to −0.19, p = 0.02) were observed to be improved significantly when the dosage of pridopidine ≥90 mg/day. Additionally, pridopidine (≥90 mg/day) increased total adverse events (RR 1.11, 95% CI = 1.00 to 1.22, p = 0.04) compared with placebo. On this basis, we analyzed the incidence of various adverse events when the dosage was ≥90 mg/day. Nonetheless, these results were within the acceptable threshold, although patients developed symptoms, such as nasopharyngitis and insomnia. Conclusion: Pridopidine improved mMS and had no statistical significance in association with TMS or adverse events. Pridopidine (≥90 mg/day) improved TMS and mMS but increased adverse events, such as nasopharyngitis and insomnia. More RCTs were expected to assess pridopidine in HD.
Collapse
Affiliation(s)
- Shujun Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianyu Liang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Xue
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shouru Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Ćwirlej-Sozańska A, Sozański B, Kupczyk M, Leszczak J, Kwolek A, Wilmowska-Pietruszyńska A, Wiśniowska-Szurlej A. Psychometric Properties and Validation of the Polish Version of the 12-Item World Health Organization Disability Assessment Schedule 2.0 in Patients with Huntington's Disease. J Clin Med 2021; 10:jcm10051053. [PMID: 33806307 PMCID: PMC7961505 DOI: 10.3390/jcm10051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Huntington's disease is a progressive neurodegenerative disorder that usually manifests in adulthood and is inherited in an autosomal dominant manner. The main aim of the study was to assess the psychometric properties of the 12-item WHO Disability Assessment Schedule (WHODAS) 2.0 in studying the level of disability in people with Huntington's disease. METHOD This is a cross-sectional study that covered 128 people with Huntington's disease living in Poland. We examined scale score reliability, internal consistency, convergent validity, and known-group validity. The disability and quality of life of people with Huntington's disease were also assessed. RESULTS The scale score reliability of the entire tool for the research group was high. The Cronbach's α test result for the whole scale was 0.97. Cronbach's α for individual domains ranged from 0.95 to 0.79. Time consistency for the overall result was 0.99 and for particular domains ranged from 0.91 to 0.99, which confirmed that the scale was consistent over time. All of the 12-item WHODAS 2.0 domains negatively correlated with all of the Huntington Quality of Life Instrument (H-QoL-I) domains. All correlation coefficients were statistically significant at the level of p < 0.001. The results obtained in the linear regression model showed that with each subsequent point of decrease in BMI the level of disability increases by an average of 0.83 points on the 12-item WHODAS 2.0 scale. With each subsequent year of the disease, the level of disability increases by an average of 1.39 points. CONCLUSIONS This is the first study assessing disability by means of the WHODAS 2.0 in the HD patient population in Poland, and it is also one of the few studies evaluating the validity of the WHODAS 2.0 scale in assessing the disability of people with HD in accordance with the recommendations of DSM-5 (R). We have confirmed that the 12-item WHODAS 2.0 is an effective tool for assessing disability and changes in functioning among people with Huntington's disease.
Collapse
Affiliation(s)
- Agnieszka Ćwirlej-Sozańska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland; (M.K.); (J.L.); (A.K.); (A.W.-S.)
- Correspondence:
| | - Bernard Sozański
- Institute of Medicine, Medical College of Rzeszow University, 35-310 Rzeszow, Poland;
| | - Mateusz Kupczyk
- Institute of Health Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland; (M.K.); (J.L.); (A.K.); (A.W.-S.)
| | - Justyna Leszczak
- Institute of Health Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland; (M.K.); (J.L.); (A.K.); (A.W.-S.)
| | - Andrzej Kwolek
- Institute of Health Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland; (M.K.); (J.L.); (A.K.); (A.W.-S.)
| | | | - Agnieszka Wiśniowska-Szurlej
- Institute of Health Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland; (M.K.); (J.L.); (A.K.); (A.W.-S.)
| |
Collapse
|
27
|
Wang JKT. Uniting homeostatic plasticity and exosome biology: A revision of the conceptual framework for drug discovery in neurodegenerative diseases? ADVANCES IN PHARMACOLOGY 2020; 90:277-306. [PMID: 33706937 DOI: 10.1016/bs.apha.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Neurodegenerative diseases (NDDs) are in need of new drug discovery approaches. Our previous systematic analyses of Huntington's Disease (HD) literature for protein-protein interactors (PPIs) and modifiers of mutant Huntingtin-driven phenotypes revealed enrichment for PPIs of genes required for homeostatic synaptic plasticity (HSP) and exosome (EV) function and exosomal proteins, which in turn highly overlapped each other and with PPIs of genes associated with other NDDs. We proposed that HSP and EVs are linked to each other and are also involved in NDD pathophysiology. Recent studies showed that HSP is indeed altered in HD and AD, and that presynaptic homeostatic plasticity in motoneurons compensates for ALS pathology. Eliminating it causes earlier degeneration and death. If this holds true in other NDDs, drug discovery in animal models should then include elucidation of homeostatic compensation that either masks phenotypes of physiologically expressed mutant genes or are overridden by their overexpression. In this new conceptual framework, enhancing such underlying homeostatic compensation forms the basis for novel therapeutic strategies to slow progression of NDDs. Moreover, if EVs are linked to HSP, then their ability to penetrate the brain, target cell types, deliver miRNA and other molecules can be leveraged to develop attractive drug modalities. Testing this new framework is posed as four questions on model development and mechanistic studies progressing from higher throughput platforms to mouse models. Similar approaches may apply to other CNS disorders including schizophrenia, autism, Rett and Fragile X syndromes due to potential links of their susceptibility genes to HSP and EVs.
Collapse
|
28
|
Sienes Bailo P, Lahoz R, Sánchez Marín JP, Izquierdo Álvarez S. Incidence of Huntington disease in a northeastern Spanish region: a 13-year retrospective study at tertiary care centre. BMC MEDICAL GENETICS 2020; 21:233. [PMID: 33228555 PMCID: PMC7684714 DOI: 10.1186/s12881-020-01174-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/12/2020] [Indexed: 11/15/2022]
Abstract
Background Despite the progress in the knowledge of Huntington disease (HD) in recent years, the epidemiology continues uncertain, so the study of incidence becomes relevant. This is important since various factors (type of population, diagnostic criteria, disease-modifying factors, etc.) make these data highly variable. Therefore, the genetic diagnosis of these patients is important, since it unequivocally allows the detection of new cases. Methods Descriptive retrospective study with 179 individuals. Incidence of HD was calculated from the ratio of number of symptomatic cases newly diagnosed per 100,000 inhabitants per year during the period 2007–2019 in Aragon (Spain). Results 50 (27.9%) incident cases of HD (CAG repeat length ≥ 36) were identified from a total of 179 persons studied. The remaining 129/179 (72.1%) were HD negative (CAG repeat length < 36). 29 (58.0%) females and 21 (42.0%) males were confirmed as HD cases. The overall incidence was 0.648 per 100,000 patient-years. 11/50 positive HD cases (22.0%) were identified by performing a predictive test, without clinical symptoms. The minimum number of CAG repeats found was 9 and the most common CAG length among HD negative individuals was 16. Conclusions Our incidence lied within the range reported for other Caucasian populations. Implementation of new techniques has allowed to determine the exact number of CAG repeats, which is especially important in patients with triplet expansions in an HD intermediate and/or incomplete penetrance allele, both in diagnostic, predictive and prenatal tests. Supplementary Information The online version contains supplementary material available at 10.1186/s12881-020-01174-z.
Collapse
Affiliation(s)
- Paula Sienes Bailo
- Departamento de Genética. Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet. C/ Padre Arrupe, s/n. Consultas Externas. Planta 3ª. 50009, Zaragoza, Spain
| | - Raquel Lahoz
- Departamento de Genética. Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet. C/ Padre Arrupe, s/n. Consultas Externas. Planta 3ª. 50009, Zaragoza, Spain.
| | - Juan Pelegrín Sánchez Marín
- Departamento de Genética. Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet. C/ Padre Arrupe, s/n. Consultas Externas. Planta 3ª. 50009, Zaragoza, Spain
| | - Silvia Izquierdo Álvarez
- Departamento de Genética. Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet. C/ Padre Arrupe, s/n. Consultas Externas. Planta 3ª. 50009, Zaragoza, Spain
| |
Collapse
|
29
|
Owada R, Awata S, Suzue K, Kanetaka H, Kakuta Y, Nakamura K. Polyglutamine-containing microglia leads to disturbed differentiation and neurite retraction of neuron-like cells. Heliyon 2020; 6:e04851. [PMID: 32954034 PMCID: PMC7486442 DOI: 10.1016/j.heliyon.2020.e04851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 04/13/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
Expanded polyglutamine-containing proteins in neurons intrinsically contributes to neuronal dysfunctions and neuronal cell death in polyglutamine (polyQ) diseases. In addition, an expanded polyQ-containing protein in microglia also leads to apoptosis of neurons. However, detailed morphological analysis of neurons exposed to conditioned medium (CM) derived from polyQ-containing microglia has not been essentially carried out. Here, we introduced aggregated peptide with 69 glutamine repeat (69Q) into BV2 microglial cells. The 69Q-containing BV2 cells showed shorter branches. The CM from 69Q-containing microglia (69Q-CM) induced neurite retraction and fewer number of branch point of neurites of differentiated PC12 cells. Likewise, the 69Q-CM induces disturbed differentiation of PC12 cells with shorter total length of neurites and fewer number of branch point of neurites. Thus, the factor(s) released from polyQ-containing microglia affect both differentiation and degeneration of neuron-like cells.
Collapse
Affiliation(s)
- Ryuji Owada
- Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Saaya Awata
- Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Kazutomo Suzue
- Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hiroyasu Kanetaka
- Laison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yohei Kakuta
- Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
- Corresponding author.
| | - Kazuhiro Nakamura
- Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
- Corresponding author.
| |
Collapse
|
30
|
Sun Y, Jiang X, Pan R, Zhou X, Qin D, Xiong R, Wang Y, Qiu W, Wu A, Wu J. Escins Isolated from Aesculus chinensis Bge. Promote the Autophagic Degradation of Mutant Huntingtin and Inhibit its Induced Apoptosis in HT22 cells. Front Pharmacol 2020; 11:116. [PMID: 32158393 PMCID: PMC7052340 DOI: 10.3389/fphar.2020.00116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/28/2020] [Indexed: 12/27/2022] Open
Abstract
The pathogenesis of Huntington’s disease (HD), an inherited progressive neurodegenerative disease, is highly associated with the cytotoxicity-inducing mutant huntingtin (mHtt) protein. Emerging evidence indicates that autophagy plays a pivotal role in degrading aggregated proteins such as mHtt to enhance neuronal viability. In this study, by employing preparative high-performance liquid chromatography (pre-HPLC), ultra-high performance liquid chromatography diode-array-detector quadrupole time-of-flight mass spectrometry (UHPLC-DAD-Q-TOF-MS) and nuclear magnetic resonance (NMR), three escins, escin IA (EA), escin IB (EB) and isoescin IA (IEA), were isolated and identified from the seed of Aesculus chinensis Bge. (ACB). After EGFP-HTT74-overexpressing HT22 cells were treated with EA, EB and IEA at safe concentrations, the clearance of mHtt and mHtt-induced apoptosis were investigated by Western blot, immunofluorescence microscopy and flow cytometry methods. In addition, the autophagy induced by these escins in HT22 cells was monitored by detecting GFP-LC3 puncta, P62 and LC3 protein expression. The results showed that EA, EB and IEA could significantly decrease mHtt levels and inhibit its induced apoptosis in HT22 cells. In addition, these three saponins induced autophagic flux by increasing the ratio of RFP-LC3 to GFP-LC3, and by decreasing P62 expression. Among the tested escins, EB displayed the best autophagy induction, which was regulated via both the mTOR and ERK signaling pathways. Furthermore, the degradation of mHtt and the commensurate decrease in its cytotoxic effects by EA, EB and IEA were demonstrated to be closely associated with autophagy induction, which depended on ATG7. In conclusion, we are the first to report that the escins, including EA, EB and IEA are novel autophagy inducers that degrade mHtt and inhibit mHtt-induced apoptosis in vitro and in vivo. As a result of these findings, the triterpenoid saponins in ACB might be considered to be promising candidates for the treatment of HD in the future.
Collapse
Affiliation(s)
- Yueshan Sun
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xueqin Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Rong Pan
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaogang Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Rui Xiong
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yiling Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenqiao Qiu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
31
|
Singh S, Singh TG. Role of Nuclear Factor Kappa B (NF-κB) Signalling in Neurodegenerative Diseases: An Mechanistic Approach. Curr Neuropharmacol 2020; 18:918-935. [PMID: 32031074 PMCID: PMC7709146 DOI: 10.2174/1570159x18666200207120949] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
A transcriptional regulatory nuclear factor kappa B (NF-κB) protein is a modulator of cellular biological activity via binding to a promoter region in the nucleus and transcribing various protein genes. The recent research implicated the intensive role of nuclear factor kappa B (NF-κB) in diseases like autoimmune disorder, inflammatory, cardiovascular and neurodegenerative diseases. Therefore, targeting the nuclear factor kappa B (NF-κB) protein offers a new opportunity as a therapeutic approach. Activation of IκB kinase/NF-κB signaling pathway leads to the development of various pathological conditions in human beings, such as neurodegenerative, inflammatory disorders, autoimmune diseases, and cancer. Therefore, the transcriptional activity of IκB kinase/NF- κB is strongly regulated at various cascade pathways. The nuclear factor NF-kB pathway plays a major role in the expression of pro-inflammatory genes, including cytokines, chemokines, and adhesion molecules. In response to the diverse stimuli, the cytosolic sequestered NF-κB in an inactivated form by binding with an inhibitor molecule protein (IkB) gets phosphorylated and translocated into the nucleus further transcribing various genes necessary for modifying various cellular functions. The various researches confirmed the role of different family member proteins of NF-κB implicated in expressing various genes products and mediating various cellular cascades. MicroRNAs, as regulators of NF- κB microRNAs play important roles in the regulation of the inflammatory process. Therefore, the inhibitor of NF-κB and its family members plays a novel therapeutic target in preventing various diseases. Regulation of NF- κB signaling pathway may be a safe and effective treatment strategy for various disorders.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
32
|
Lloret A, Beal MF. PGC-1α, Sirtuins and PARPs in Huntington's Disease and Other Neurodegenerative Conditions: NAD+ to Rule Them All. Neurochem Res 2019; 44:2423-2434. [PMID: 31065944 DOI: 10.1007/s11064-019-02809-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022]
Abstract
In this review, we summarize the available published information on the neuroprotective effects of increasing nicotinamide adenine dinucleotide (NAD+) levels in Huntington's disease models. We discuss the rationale of potential therapeutic benefit of administering nicotinamide riboside (NR), a safe and effective NAD+ precursor. We discuss the agonistic effect on the Sirtuin1-PGC-1α-PPAR pathway as well as Sirtuin 3, which converge in improving mitochondrial function, decreasing ROS production and ameliorating bioenergetics deficits. Also, we discuss the potential synergistic effect of increasing NAD+ combined with PARPs inhibitors, as a clinical therapeutic option not only in HD, but other neurodegenerative conditions.
Collapse
Affiliation(s)
- Alejandro Lloret
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1400 York Street, 5th Floor, Room A-501, New York, NY, 10065, USA.
- NeuCyte Pharmaceuticals, 1561 Industrial Road, San Carlos, CA, 94070, USA.
| | - M Flint Beal
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1400 York Street, 5th Floor, Room A-501, New York, NY, 10065, USA
| |
Collapse
|
33
|
da S. Hage-Melim LI, Ferreira JV, de Oliveira NK, Correia LC, Almeida MR, Poiani JG, Taft CA, de Paula da Silva CH. The Impact of Natural Compounds on the Treatment of Neurodegenerative Diseases. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190327100418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDDs) are characterized by a progressive deterioration of the motor and/or cognitive function, that are often accompanied by psychiatric disorders, caused by a selective loss of neurons in the central nervous system. Among the NDDs we can mention Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia 3 (SCA3), spinal and bulbar muscular atrophy (SBMA) and Creutzfeldt-Jakob disease (CJD). AD and HD are characterized mainly by massive neuronal loss. PD, ALS, SCA3 and SBMA are agerelated diseases which have characteristic motor symptoms. CJD is an NDD caused by prion proteins. With increasing life expectancy, elderly populations tend to have more health problems, such as chronic diseases related to age and disability. Therefore, the development of therapeutic strategies to treat or prevent multiple pathophysiological conditions in the elderly can improve the expectation and quality of life. The attention of researchers has been focused on bioactive natural compounds that represent important resources in the discovery and development of drug candidates against NDDs. In this review, we discuss the pathogenesis, symptoms, potential targets, treatment and natural compounds effective in the treatment of AD, PD, HD, ALS, SCA3, SBMA and CJD.
Collapse
Affiliation(s)
- Lorane I. da S. Hage-Melim
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Jaderson V. Ferreira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Nayana K.S. de Oliveira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Lenir C. Correia
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Marcos R.S. Almeida
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - João G.C. Poiani
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlton A. Taft
- Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos H.T. de Paula da Silva
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
34
|
Shacham T, Sharma N, Lederkremer GZ. Protein Misfolding and ER Stress in Huntington's Disease. Front Mol Biosci 2019; 6:20. [PMID: 31001537 PMCID: PMC6456712 DOI: 10.3389/fmolb.2019.00020] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence in recent years indicates that protein misfolding and aggregation, leading to ER stress, are central factors of pathogenicity in neurodegenerative diseases. This is particularly true in Huntington's disease (HD), where in contrast with other disorders, the cause is monogenic. Mutant huntingtin interferes with many cellular processes, but the fact that modulation of ER stress and of the unfolded response pathways reduces the toxicity, places these mechanisms at the core and gives hope for potential therapeutic approaches. There is currently no effective treatment for HD and it has a fatal outcome a few years after the start of symptoms of cognitive and motor impairment. Here we will discuss recent findings that shed light on the mechanisms of protein misfolding and aggregation that give origin to ER stress in neurodegenerative diseases, focusing on Huntington's disease, on the cellular response and on how to use this knowledge for possible therapeutic strategies.
Collapse
Affiliation(s)
- Talya Shacham
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Neeraj Sharma
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Gerardo Z Lederkremer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|