1
|
Fatima A, Geethakumari AM, Ahmed WS, Biswas KH. A potential allosteric inhibitor of SARS-CoV-2 main protease (M pro) identified through metastable state analysis. Front Mol Biosci 2024; 11:1451280. [PMID: 39310374 PMCID: PMC11413593 DOI: 10.3389/fmolb.2024.1451280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Anti-COVID19 drugs, such as nirmatrelvir, have been developed targeting the SARS-CoV-2 main protease, Mpro, based on the critical requirement of its proteolytic processing of the viral polyproteins into functional proteins essential for viral replication. However, the emergence of SARS-CoV-2 variants with Mpro mutations has raised the possibility of developing resistance against these drugs, likely due to therapeutic targeting of the Mpro catalytic site. An alternative to these drugs is the development of drugs that target an allosteric site distant from the catalytic site in the protein that may reduce the chance of the emergence of resistant mutants. Here, we combine computational analysis with in vitro assay and report the discovery of a potential allosteric site and an allosteric inhibitor of SARS-CoV-2 Mpro. Specifically, we identified an Mpro metastable state with a deformed catalytic site harboring potential allosteric sites, raising the possibility that stabilization of this metastable state through ligand binding can lead to the inhibition of Mpro activity. We then performed a computational screening of a library (∼4.2 million) of drug-like compounds from the ZINC database and identified several candidate molecules with high predicted binding affinity. MD simulations showed stable binding of the three top-ranking compounds to the putative allosteric sites in the protein. Finally, we tested the three compounds in vitro using a BRET-based Mpro biosensor and found that one of the compounds (ZINC4497834) inhibited the Mpro activity. We envisage that the identification of a potential allosteric inhibitor of Mpro will aid in developing improved anti-COVID-19 therapy.
Collapse
|
2
|
Luan M, Hou Z, Zhang B, Ma L, Yuan S, Liu Y, Huang G. Inter-Domain Repulsion of Dumbbell-Shaped Calmodulin during Electrospray Ionization Revealed by Molecular Dynamics Simulations. Anal Chem 2023; 95:8798-8806. [PMID: 37309130 DOI: 10.1021/acs.analchem.2c05630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mechanisms whereby protein ions are released from nanodroplets at the liquid-gas interface have continued to be controversial since electrospray ionization (ESI) mass spectrometry was widely applied in biomolecular structure analysis in solution. Several viable pathways have been proposed and verified for single-domain proteins. However, the ESI mechanism of multi-domain proteins with more complicated and flexible structures remains unclear. Herein, dumbbell-shaped calmodulin was chosen as a multi-domain protein model to perform molecular dynamics simulations to investigate the structural evolution during the ESI process. For [Ca4CAM], the protein followed the classical charge residue model. As the inter-domain electrostatic repulsion increased, the droplet was found to split into two sub-droplets, while stronger-repulsive apo-calmodulin unfolded during the early evaporation stage. We designated this novel ESI mechanism as the domain repulsion model, which provides new mechanistic insights into further exploration of proteins containing more domains. Our results suggest that greater attention should be paid to the effect of domain-domain interactions on structure retention during liquid-gas interface transfer when mass spectrometry is used as the developing technique in gas phase structural biology.
Collapse
Affiliation(s)
- Moujun Luan
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhuanghao Hou
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Buchun Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Likun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Siming Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Yangzhong Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Guangming Huang
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Ahmed WS, Philip AM, Biswas KH. Decreased Interfacial Dynamics Caused by the N501Y Mutation in the SARS-CoV-2 S1 Spike:ACE2 Complex. Front Mol Biosci 2022; 9:846996. [PMID: 35936792 PMCID: PMC9355283 DOI: 10.3389/fmolb.2022.846996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Coronavirus Disease of 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a massive health crisis across the globe, with some genetic variants gaining enhanced infectivity and competitive fitness, and thus significantly aggravating the global health concern. In this regard, the recent SARS-CoV-2 alpha, beta, and gamma variants (B.1.1.7, B.1.351, and P.1 lineages, respectively) are of great significance in that they contain several mutations that increase their transmission rates as evident from clinical reports. By the end of March 2021, these variants were accounting for about two-thirds of SARS-CoV-2 variants circulating worldwide. Specifically, the N501Y mutation in the S1 spike receptor binding domain (S1-RBD) of these variants have been reported to increase its affinity for ACE2, although the basis for this is not entirely clear yet. Here, we dissect the mechanism underlying the increased binding affinity of the N501Y mutant for ACE2 using molecular dynamics (MD) simulations of the available ACE2-S1-RBD complex structure (6M0J) and show a prolonged and stable interfacial interaction of the N501Y mutant S1-RBD with ACE2 compared to the wild type S1-RBD. Additionally, we find that the N501Y mutant S1-RBD displays altered dynamics that likely aids in its enhanced interaction with ACE2. By elucidating a mechanistic basis for the increased affinity of the N501Y mutant S1-RBD for ACE2, we believe that the results presented here will aid in developing therapeutic strategies against SARS-CoV-2 including designing of therapeutic agents targeting the ACE2-S1-RBD interaction.
Collapse
Affiliation(s)
- Wesam S. Ahmed
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Angelin M. Philip
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
4
|
Intracellular Ionic Strength Sensing Using NanoLuc. Int J Mol Sci 2021; 22:ijms22020677. [PMID: 33445497 PMCID: PMC7826950 DOI: 10.3390/ijms22020677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Intracellular ionic strength regulates myriad cellular processes that are fundamental to cellular survival and proliferation, including protein activity, aggregation, phase separation, and cell volume. It could be altered by changes in the activity of cellular signaling pathways, such as those that impact the activity of membrane-localized ion channels or by alterations in the microenvironmental osmolarity. Therefore, there is a demand for the development of sensitive tools for real-time monitoring of intracellular ionic strength. Here, we developed a bioluminescence-based intracellular ionic strength sensing strategy using the Nano Luciferase (NanoLuc) protein that has gained tremendous utility due to its high, long-lived bioluminescence output and thermal stability. Biochemical experiments using a recombinantly purified protein showed that NanoLuc bioluminescence is dependent on the ionic strength of the reaction buffer for a wide range of ionic strength conditions. Importantly, the decrease in the NanoLuc activity observed at higher ionic strengths could be reversed by decreasing the ionic strength of the reaction, thus making it suitable for sensing intracellular ionic strength alterations. Finally, we used an mNeonGreen–NanoLuc fusion protein to successfully monitor ionic strength alterations in a ratiometric manner through independent fluorescence and bioluminescence measurements in cell lysates and live cells. We envisage that the biosensing strategy developed here for detecting alterations in intracellular ionic strength will be applicable in a wide range of experiments, including high throughput cellular signaling, ion channel functional genomics, and drug discovery.
Collapse
|
5
|
Role of Actin Cytoskeleton in E-cadherin-Based Cell–Cell Adhesion Assembly and Maintenance. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00214-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Biswas KH. Molecular Mobility-Mediated Regulation of E-Cadherin Adhesion. Trends Biochem Sci 2019; 45:163-173. [PMID: 31810601 DOI: 10.1016/j.tibs.2019.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Cells in epithelial tissues utilize homotypic E-cadherin interaction-mediated adhesions to both physically adhere to each other and sense the physical properties of their microenvironment, such as the presence of other cells in close vicinity or an alteration in the mechanical tension of the tissue. These position E-cadherin centrally in organogenesis and other processes, and its function is therefore tightly regulated through a variety of means including endocytosis and gene expression. How does membrane molecular mobility of E-cadherin, and thus membrane physical properties and associated actin cytoskeleton, impinges on the assembly of adhesive clusters and signaling is discussed.
Collapse
Affiliation(s)
- Kabir H Biswas
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|