1
|
Chen KQ, Ke BY, Cheng L, Guan MT, Wang ZB, Wang SZ. Research and Progress of Probucol in Nonalcoholic Fatty Liver Disease. Mini Rev Med Chem 2023; 23:1905-1911. [PMID: 36967462 DOI: 10.2174/1389557523666230324092842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 03/29/2023]
Abstract
With the development of the social economy over the last 30 years, non-alcoholic fatty liver disease (NAFLD) is affected by unhealthy living habits and eating styles and has gradually become an increasingly serious public health problem. It is very important to investigate the pathogenesis and treatment of NAFLD for the development of human health. Probucol is an antioxidant with a bis-phenol structure. Although probucol is a clinically used cholesterol-lowering and antiatherosclerosis drug, its mechanism has not been elucidated in detail. This paper reviews the chemical structure, pharmacokinetics and pharmacological research of probucol. Meanwhile, this paper reviews the mechanism of probucol in NAFLD. We also analyzed and summarized the experimental models and clinical trials of probucol in NAFLD. Although current therapeutic strategies for NAFLD are not effective, we hope that through further research on probucol, we will be able to find suitable treatments to solve this problem in the future.
Collapse
Affiliation(s)
- Ke-Qian Chen
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Bo-Yi Ke
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Lu Cheng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Meng-Ting Guan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| |
Collapse
|
2
|
Zhan YT, Su HY, An W. Glycosyltransferases and non-alcoholic fatty liver disease. World J Gastroenterol 2016; 22:2483-2493. [PMID: 26937136 PMCID: PMC4768194 DOI: 10.3748/wjg.v22.i8.2483] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/22/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease and its incidence is increasing worldwide. However, the underlying mechanisms leading to the development of NAFLD are still not fully understood. Glycosyltransferases (GTs) are a diverse class of enzymes involved in catalyzing the transfer of one or multiple sugar residues to a wide range of acceptor molecules. GTs mediate a wide range of functions from structure and storage to signaling, and play a key role in many fundamental biological processes. Therefore, it is anticipated that GTs have a role in the pathogenesis of NAFLD. In this article, we present an overview of the basic information on NAFLD, particularly GTs and glycosylation modification of certain molecules and their association with NAFLD pathogenesis. In addition, the effects and mechanisms of some GTs in the development of NAFLD are summarized.
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Probucol is a potent antioxidative drug that has been used for prevention and treatment of atherosclerotic cardiovascular diseases and xanthoma. Probucol has been used as a lipid-lowering drug for a long time especially in Japan, although Western countries quitted its use because of the reduction in serum HDL-cholesterol (HDL-C). This review highlights both basic and clinical studies that provide new insights into the pleiotropic effects of probucol. RECENT FINDINGS Recently, the mechanisms for the pharmacologic actions of probucol have been elucidated at the molecular level with a special focus on HDL metabolism and its functions. Probucol enhances plasma cholesteryl ester transfer protein activity and hepatic scavenger receptor class B type I, causing a decrease in HDL-C. It also accelerates the antioxidative function of HDL via increase in paraoxonase 1 activity. Recent retrospective analyses of probucol-treated patients with heterozygous familial hypercholesterolemia and those after coronary revascularization demonstrated a strong beneficial effect of probucol on secondary prevention of cardiovascular events and mortality. SUMMARY Probucol has pleiotropic and beneficial therapeutic effects on cardiovascular system. Although statins are effective for lowering LDL-cholesterol (LDL-C) and reducing coronary heart disease risk, probucol should be considered as an option in case statins are not effective.
Collapse
Affiliation(s)
- Shizuya Yamashita
- aDepartment of Community Medicine bDepartment of Cardiovascular Medicine, Osaka University Graduate School of Medicine cSumitomo Hospital, Osaka, Japan
| | | | | |
Collapse
|
4
|
Zhan Y, Zhao F, Xie P, Zhong L, Li D, Gai Q, Li L, Wei H, Zhang L, An W. Mechanism of the effect of glycosyltransferase GLT8D2 on fatty liver. Lipids Health Dis 2015; 14:43. [PMID: 25952508 PMCID: PMC4425853 DOI: 10.1186/s12944-015-0040-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/22/2015] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies have shown that some glycosyltransferases are involved in the development of nonalcoholic fatty liver disease (NAFLD). The objective of this study was to explore the effect and mechanism of glycosyltransferase GLT8D2 on fatty liver. Methods Rat model of NAFLD was established by induction with high-fat-diet. The GLT8D2 expression in rat liver was examined using immunohistochemistry. Oil Red O staining and triglyceride assay were used to measure the effect of abnormal GLT8D2 expression on lipid accumulation in HepG2 cells. The expression levels of lipid metabolism-related key molecules, namely sterol regulatory element-binding protein-1c (SREBP-1c), stearoyl-coA desaturase (SCD), carnitine palmitoyltransferase-1 (CPT1) and microsomal triglyceride transfer protein (MTP), in HepG2 cells with abnormal GLT8D2 expression were determined by western blot analyses. Results The expression of GLT8D2 was higher in the liver of rats with NAFLD than in the control rats, and GLT8D2 was mainly located around lipid droplets in hepatocytes. GLT8D2 expression increased in steatosis HepG2 cells compared with that in normal HepG2 cells. GLT8D2 positively regulated lipid droplet accumulation and triglyceride content in HepG2 cells. Upregulation or knockdown of GLT8D2 had no effect on the expressions of SREBP-1c, SCD or CPT-1 proteins in HepG2 cells. However, GLT8D2 expression negatively regulated the expression of MTP protein in HepG2 cells. Conclusion GLT8D2 participated in NAFLD pathogenesis possibly by negatively regulating MTP expression. Specific inhibition of GLT8D2 via an antagonistic strategy could provide a potential candidate approach for treatment of NAFLD.
Collapse
Affiliation(s)
- Yutao Zhan
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, No.1 Dongjiaominxiang, Dongcheng District, Beijing, 100730, China.
| | - Fei Zhao
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, No.1 Dongjiaominxiang, Dongcheng District, Beijing, 100730, China.
| | - Ping Xie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China.
| | - Leping Zhong
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, No.1 Dongjiaominxiang, Dongcheng District, Beijing, 100730, China.
| | - Dongnian Li
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, No.1 Dongjiaominxiang, Dongcheng District, Beijing, 100730, China.
| | - Qujing Gai
- Institutes of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Li Li
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, No.1 Dongjiaominxiang, Dongcheng District, Beijing, 100730, China.
| | - Hongshan Wei
- Institutes of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China.
| | - Wei An
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 10 You An Men Wai Xi Tou Tiao, Beijing, 100069, China.
| |
Collapse
|
5
|
Su X, Wang Y, Zhou G, Yang X, Yu R, Lin Y, Zheng C. Probucol attenuates ethanol-induced liver fibrosis in rats by inhibiting oxidative stress, extracellular matrix protein accumulation and cytokine production. Clin Exp Pharmacol Physiol 2014; 41:73-80. [PMID: 24117782 DOI: 10.1111/1440-1681.12182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/22/2013] [Accepted: 09/23/2013] [Indexed: 01/18/2023]
Abstract
1. Liver fibrosis is characterized by excessive accumulation of extracellular matrix (ECM) proteins in the liver. Probucol, a lipid-lowering drug, was found to prevent liver injury in rats treated with carbon tetrachloride (CCl4 ). In the present study, we investigated whether probucol has protective effect against liver fibrosis in rats treated with ethanol and CCl4 . 2. Thirty rats were randomly divided into five groups. Groups I and II served as the normal control and the model of liver fibrosis, respectively. Groups III-V were treated with probucol at a doses of 250, 500 and 1000 mg/kg, respectively. Rats in Group II were fed a complex diet that includes alcohol, corn oil and pyrazole, and were injected intraperitoneally with CCl4 to induce hepatic fibrosis. Blood was obtained to assess markers of liver function. Liver samples were collected to evaluate mRNA and protein expression, histological changes and oxidative stress. 3. Probucol significantly attenuated the histological changes induced by ethanol + CCl4 and improved liver function. Expression levels of α-smooth muscle actin and collagen I was decreased in the probucol-treated groups. Moreover, probucol markedly suppressed increases in oxidative stress, ECM protein accumulation and cytokine production induced by ethanol + CCl4 . Finally, probucol inhibited activation of the extracellular signal-regulated kinase signalling pathway induced by ethanol + CCl4 . 4. Our findings reveal that probucol attenuates ethanol + CCl4 -induced liver fibrosis by inhibiting oxidative stress, ECM protein accumulation and cytokine production. These data suggest that probucol may be useful for the prevention and treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Xuesong Su
- Department of Nephrology, Shengjing Hospital, China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Bezborodkina NN, Chestnova AY, Okovity SV, Kudryavtsev BN. Activity of glycogen synthase and glycogen phosphorylase in normal and cirrhotic rat liver during glycogen synthesis from glucose or fructose. ACTA ACUST UNITED AC 2013; 66:147-54. [PMID: 24373751 DOI: 10.1016/j.etp.2013.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 11/01/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023]
Abstract
Cirrhotic patients often demonstrate glucose intolerance, one of the possible causes being a decreased glycogen-synthesizing capacity of the liver. At the same time, information about the rates of glycogen synthesis in the cirrhotic liver is scanty and contradictory. We studied the dynamics of glycogen accumulation and the activity of glycogen synthase (GS) and glycogen phosphorylase (GP) in the course of 120min after per os administration of glucose or fructose to fasted rats with CCl4-cirrhosis or fasted normal rats. Blood serum and liver pieces were sampled for examinations. In the normal rat liver administration of glucose/fructose initiated a fast accumulation of glycogen, while in the cirrhotic liver glycogen was accumulated with a 20min delay and at a lower rate. In the normal liver GS activity rose sharply and GPa activity dropped in the beginning of glycogen synthesis, but 60min later a high synthesis rate was sustained at the background of a high GS and GPa activity. Contrariwise, in the cirrhotic liver glycogen was accumulated at the background of a decreased GS activity and a low GPa activity. Refeeding with fructose resulted in a faster increase in the GS activity in both the normal and the cirrhotic liver than refeeding with glucose. To conclude, the rate of glycogen synthesis in the cirrhotic liver is lower than in the normal one, the difference being probably associated with a low GS activity.
Collapse
Affiliation(s)
- Natalia N Bezborodkina
- Laboratory of Cellular Pathology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Anna Yu Chestnova
- Laboratory of Cellular Pathology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergey V Okovity
- Cathedra of Pharmacology, Saint Petersburg State Chemical Pharmaceutical Academy, St. Petersburg, Russia
| | - Boris N Kudryavtsev
- Laboratory of Cellular Pathology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
7
|
Wei HS, Wei HL, Zhao F, Zhong LP, Zhan YT. Glycosyltransferase GLT8D2 positively regulates ApoB100 protein expression in hepatocytes. Int J Mol Sci 2013; 14:21435-46. [PMID: 24173238 PMCID: PMC3856013 DOI: 10.3390/ijms141121435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by triglyceride (TG) accumulation in hepatocytes. Very low density lipoprotein (VLDL) is a major secretory product of the liver that transports endogenously synthesized TG. Disrupted VLDL secretion may contribute to the accumulation of TG in hepatocytes. ApoB100 (apolipoprotein B100) is a glycoprotein and an essential protein component of VLDL. Its glycosylation may affect VLDL assembly and secretion. However, which glycosyltransferase catalyzes apoB100 glycosylation is unknown. In this study, we cloned the GLT8D2 (glycosyltransferase 8 domain containing 2) gene from HepG2 cells and generated a series of plasmids for in vitro studies of its molecular functions. We discovered that GLT8D2 was localized in the ER, interacted with apoB100, and positively regulated the levels of apoB100 protein in HepG2 cells. Based on these results, we propose that GLT8D2 is a glycosyltransferase of apoB100 that regulates apoB100 levels in hepatocytes.
Collapse
Affiliation(s)
- Hong-Shan Wei
- Institutes of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; E-Mail:
| | - Hong-Lian Wei
- Seventh Department of Internal Medicine, Linyi People’s Hospital, Linyi 276000, Shandong, China; E-Mail:
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; E-Mails: (F.Z.); (L.-P.Z.)
| | - Fei Zhao
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; E-Mails: (F.Z.); (L.-P.Z.)
| | - Le-Ping Zhong
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; E-Mails: (F.Z.); (L.-P.Z.)
| | - Yu-Tao Zhan
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; E-Mails: (F.Z.); (L.-P.Z.)
| |
Collapse
|