1
|
Hidaka M, Hara T, Soyama A, Adachi T, Matsushima H, Tanaka T, Ishimaru H, Miyaaki H, Nakao K, Eguchi S. Long‐term outcomes of living‐donor liver transplantation, hepatic resection, and local therapy for hepatocellular carcinoma with three <3‐cm nodules in a single institute. JGH Open 2022; 6:539-546. [PMID: 35928699 PMCID: PMC9344587 DOI: 10.1002/jgh3.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022]
Abstract
Background and Aim Treatment for small hepatocellular carcinoma (HCC) is determined based on the results of a liver function test and the tumor location and spread. The present study compared the outcomes among local therapy, hepatic resection (HR), and living‐donor liver transplantation (LDLT) for small HCC in a single institute. Methods We compared the overall survival, recurrence‐free survival, and cancer‐specific survival rates in patients with three HCC nodules <3 cm in size among local therapy, which included radiofrequency ablation (RFA), percutaneous ethanol injection (PEI), and transarterial chemoembolization (TACE), and surgical treatment (HR and LDLT). Results One hundred and ninety‐seven patients with local therapy (109 RFA, 26 PEI, and 78 TACE), 107 with HR, and 66 with LDLT were enrolled in this study. There was no significant difference in OS among these groups. The recurrence‐free, cancer‐specific survival (CSS) of LDLT was superior to local therapy and HR. The prognostic factors for the survival were Child–Pugh (CP) Grade B and tumor marker for local therapy and multiple tumors and elevated ALT levels for HR. Conclusions For CP grade B patients with HCC of three <3‐cm nodule, LDLT could be considered because it resulted in better survival and CSS rates than local therapy.
Collapse
Affiliation(s)
- Masaaki Hidaka
- Department of Surgery Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Takanobu Hara
- Department of Surgery Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Akihiko Soyama
- Department of Surgery Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Tomohiko Adachi
- Department of Surgery Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Hajime Matsushima
- Department of Surgery Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Takayuki Tanaka
- Department of Surgery Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Hideki Ishimaru
- Department of Radiological Sciences Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Hisamitsu Miyaaki
- Department of Gastroenterology and Hepatology Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Susumu Eguchi
- Department of Surgery Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| |
Collapse
|
2
|
Nehlsen AD, Sindhu KK, Wolken T, Khan F, Kyriakakos CK, Ward SC, Moshier E, Taouli B, Buckstein M. Characterization and Prediction of Signal Intensity Changes in Normal Liver Parenchyma on Gadoxetic Acid-enhanced MRI Scans after Liver-directed Radiation Therapy. Radiol Imaging Cancer 2022; 4:e210100. [PMID: 35904411 PMCID: PMC9358658 DOI: 10.1148/rycan.210100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/17/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Purpose To better characterize and understand the significance of focal liver reaction (FLR) development in a large cohort of patients who underwent gadoxetic acid-enhanced MRI after being treated with radiation therapy (RT) for hepatobiliary tumors. Materials and Methods This retrospective study evaluated 100 patients (median age, 65 years [first and third quartiles, 60-69 years]; 80 men) who underwent RT for hepatocellular carcinoma, bile duct tumors, or liver metastases at Mount Sinai Hospital between March 1, 2018, and February 29, 2020. CT simulation scans were fused to MRI scans obtained 1-6 months and 6-12 months after RT, using the hepatobiliary phase of the MRI. To define FLR volume, two radiation oncologists independently delineated the borders of the hypointensity observed on MRI scans in the liver region where RT was delivered. Biologically effective dose (BED) thresholds for the formation of FLRs were calculated, along with albumin-bilirubin (ALBI) scores and grades, and overall survival. Results Most patients developed FLRs, which decreased in volume over time. Median BED threshold values for FLR development were 63.6 Gy at 1-6 months and 88.7 Gy at 6-12 months. While higher baseline ALBI scores were associated with a lower rate of FLRs, there was a significant association between FLR volume and increase in ALBI score at 1-6 months (P = .048). Twelve- and 24-month survival estimates for the cohort were 81% and 48%, respectively. Histopathologic analysis of seven explanted liver specimens demonstrated findings consistent with radiation-induced liver disease. Conclusion FLRs were a clear measure of liver damage after RT and were associated with the development of liver dysfunction and focal radiation-induced liver disease. Keywords: MRI, Radiation Therapy Supplemental material is available for this article. © RSNA, 2022.
Collapse
|
3
|
Nadarevic T, Giljaca V, Colli A, Fraquelli M, Casazza G, Miletic D, Štimac D. Computed tomography for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease. Cochrane Database Syst Rev 2021; 10:CD013362. [PMID: 34611889 PMCID: PMC8493329 DOI: 10.1002/14651858.cd013362.pub2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hepatocellular carcinoma occurs mostly in people with chronic liver disease and ranks sixth in terms of global incidence of cancer, and fourth in terms of cancer deaths. In clinical practice, computed tomography (CT) is used as a second-line diagnostic imaging modality to confirm the presence of focal liver lesions suspected as hepatocellular carcinoma on prior diagnostic test such as abdominal ultrasound or alpha-foetoprotein, or both, either in surveillance programmes or in clinical settings. According to current guidelines, a single contrast-enhanced imaging study CT or magnetic resonance imaging (MRI) showing typical hallmarks of hepatocellular carcinoma in people with cirrhosis is valid to diagnose hepatocellular carcinoma. However, a significant number of hepatocellular carcinomas do not show typical hallmarks on imaging modalities, and hepatocellular carcinoma is, therefore, missed. There is no clear evidence of the benefit of surveillance programmes in terms of overall survival: the conflicting results can be a consequence of inaccurate detection, ineffective treatment, or both. Assessing the diagnostic accuracy of CT may clarify whether the absence of benefit could be related to underdiagnosis. Furthermore, an assessment of the accuracy of CT in people with chronic liver disease, who are not included in surveillance programmes is needed for either ruling out or diagnosing hepatocellular carcinoma. OBJECTIVES Primary: to assess the diagnostic accuracy of multidetector, multiphasic contrast-enhanced CT for the diagnosis of hepatocellular carcinoma of any size and at any stage in adults with chronic liver disease, either in a surveillance programme or in a clinical setting. Secondary: to assess the diagnostic accuracy of CT for the diagnosis of resectable hepatocellular carcinoma in adults with chronic liver disease. SEARCH METHODS We searched the Cochrane Hepato-Biliary Trials Register, Cochrane Hepato-Biliary Diagnostic-Test-Accuracy Studies Register, the Cochrane Library, MEDLINE, Embase, LILACS, Science Citation Index Expanded, and Conference Proceedings Citation Index - Science until 4 May 2021. We applied no language or document-type restrictions. SELECTION CRITERIA Studies assessing the diagnostic accuracy of CT for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease, with cross-sectional designs, using one of the acceptable reference standards, such as pathology of the explanted liver and histology of resected or biopsied focal liver lesion with at least a six-month follow-up. DATA COLLECTION AND ANALYSIS At least two review authors independently screened studies, extracted data, and assessed the risk of bias and applicability concerns, using the QUADAS-2 checklist. We presented the results of sensitivity and specificity, using paired forest plots, and tabulated the results. We used a hierarchical meta-analysis model where appropriate. We presented uncertainty of the accuracy estimates using 95% confidence intervals (CIs). We double-checked all data extractions and analyses. MAIN RESULTS We included 21 studies, with a total of 3101 participants. We judged all studies to be at high risk of bias in at least one domain because most studies used different reference standards, often inappropriate to exclude the presence of the target condition, and the time-interval between the index test and the reference standard was rarely defined. Regarding applicability in the patient selection domain, we judged 14% (3/21) of studies to be at low concern and 86% (18/21) of studies to be at high concern owing to characteristics of the participants who were on waiting lists for orthotopic liver transplantation. CT for hepatocellular carcinoma of any size and stage: sensitivity 77.5% (95% CI 70.9% to 82.9%) and specificity 91.3% (95% CI 86.5% to 94.5%) (21 studies, 3101 participants; low-certainty evidence). CT for resectable hepatocellular carcinoma: sensitivity 71.4% (95% CI 60.3% to 80.4%) and specificity 92.0% (95% CI 86.3% to 95.5%) (10 studies, 1854 participants; low-certainty evidence). In the three studies at low concern for applicability (861 participants), we found sensitivity 76.9% (95% CI 50.8% to 91.5%) and specificity 89.2% (95% CI 57.0% to 98.1%). The observed heterogeneity in the results remains mostly unexplained. The sensitivity analyses, which included only studies with clearly prespecified positivity criteria and only studies in which the reference standard results were interpreted without knowledge of the results of the index test, showed no variation in the results. AUTHORS' CONCLUSIONS In the clinical pathway for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease, CT has roles as a confirmatory test for hepatocellular carcinoma lesions, and for staging assessment. We found that using CT in detecting hepatocellular carcinoma of any size and stage, 22.5% of people with hepatocellular carcinoma would be missed, and 8.7% of people without hepatocellular carcinoma would be unnecessarily treated. For resectable hepatocellular carcinoma, we found that 28.6% of people with resectable hepatocellular carcinoma would improperly not be resected, while 8% of people without hepatocellular carcinoma would undergo inappropriate surgery. The uncertainty resulting from the high risk of bias in the included studies and concerns regarding their applicability limit our ability to confidently draw conclusions based on our results.
Collapse
Affiliation(s)
- Tin Nadarevic
- Department of Radiology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Vanja Giljaca
- Department of Gastroenterology, Heart of England NHS Foundation Trust, Birmingham, UK
| | - Agostino Colli
- Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Mirella Fraquelli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Casazza
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Damir Miletic
- Department of Radiology , Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Davor Štimac
- Department of Gastroenterology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| |
Collapse
|
4
|
miR-23a-3p is involved in drug resistance by directly targeting the influx drug transporter organic anion-transporting polypeptide 2. Childs Nerv Syst 2021; 37:2545-2555. [PMID: 33779805 DOI: 10.1007/s00381-021-05146-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Drug transporters are involved in the drug resistance of individuals with drug-resistant epilepsy by influencing the intracerebral transport of antiepileptic drugs (AEDs). The expression of drug transporters is associated with microRNAs. We previously revealed that miR-23a-3p levels were elevated in the blood of patients with intractable epilepsy. Additionally, the influx drug transporter organic anion-transporting polypeptide 2 (Oatp2) is involved in the intracerebral transport of valproic acid (VPA), the most commonly used AED; repeated seizures lead to decreased expression of Oatp2. However, the role of miR-23a-3p in the expression of Oatp2 and in the development of drug resistance has not been established. Herein, we aimed to determine the potential role of miR-23a-3p in VPA-resistant epilepsy through in vivo and in vitro experiments. METHODS Epilepsy was elicited after status epilepticus (SE) was induced by lithium-pilocarpine in adult Sprague-Dawley rats, followed by VPA treatment to select rats with VPA resistance. The expression of miR-23a-3p was detected by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). A miR-23a-3p inhibitor was intracerebrally injected into VPA-resistant rats, and histological staining and Morris water maze tests were performed to evaluate brain damage and learning/memory functions in these rats. Subsequently, a dual-luciferase reporter assay and a VPA uptake assay were performed in brain microvascular endothelial cells (BMECs) to investigate the underlying mechanism of action of miR-23a-3p. RESULTS Our results indicated that compared to that in control rats, miR-23a-3p was elevated in VPA-resistant rats. Intracerebral injection of a miR-23a-3p inhibitor reduced brain damage and the associated deficits in learning and memory functions in rats with VPA resistance. Further investigation indicated that Oatp2 was the direct target of miR-23a-3p, and it was negatively regulated by miR-23a-3p in the brain and BMECs. Furthermore, we demonstrated that miR-23a-3p reduced VPA uptake in BMECs by regulating Oatp2 expression. CONCLUSIONS miR-23a-3p is involved in VPA resistance in epilepsy by directly targeting the influx drug transporter Oatp2, indicating that miR-23a-3p could be a potential therapeutic target for intractable epilepsy.
Collapse
|
5
|
Sun R, Ying Y, Tang Z, Liu T, Shi F, Li H, Guo T, Huang S, Lai R. The Emerging Role of the SLCO1B3 Protein in Cancer Resistance. Protein Pept Lett 2020; 27:17-29. [PMID: 31556849 PMCID: PMC6978646 DOI: 10.2174/0929866526666190926154248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Currently, chemotherapy is one of the mainstays of oncologic therapies. But the efficacy of chemotherapy is often limited by drug resistance and severe side effects. Consequently, it is becoming increasingly important to investigate the underlying mechanism and overcome the problem of anticancer chemotherapy resistance. The solute carrier organic anion transporter family member 1B3 (SLCO1B3), a functional transporter normally expressed in the liver, transports a variety of endogenous and exogenous compounds, including hormones and their conjugates as well as some anticancer drugs. The extrahepatic expression of SLCO1B3 has been detected in different cancer cell lines and cancer tissues. Recently, accumulating data indicates that the abnormal expression and function of SLCO1B3 are involved in resistance to anticancer drugs, such as taxanes, camptothecin and its analogs, SN-38, and Androgen Deprivation Therapy (ADT) in breast, prostate, lung, hepatic, and colorectal cancer, respectively. Thus, more investigations have been implemented to identify the potential SLCO1B3-related mechanisms of cancer drug resistance. In this review, we focus on the emerging roles of SLCO1B3 protein in the development of cancer chemotherapy resistance and briefly discuss the mechanisms of resistance. Elucidating the function of SLCO1B3 in chemoresistance may bring out novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Ruipu Sun
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China.,Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Zhimin Tang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Ting Liu
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Huixia Li
- Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Taichen Guo
- Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Shibo Huang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China.,Department of Pharmacy, Medical College, Nanchang University, Nanchang 330006, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences / Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| |
Collapse
|
6
|
Sun XL, Jiang X, Kuang Y, Xing L, Bu LY, Yuan SH, Yu JM, Zheng SS. Potential of Gd-EOB-DTPA as an imaging biomarker for liver injury estimation after radiation therapy. Hepatobiliary Pancreat Dis Int 2019; 18:354-359. [PMID: 31221569 DOI: 10.1016/j.hbpd.2019.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/20/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatic radiation injury severely restricts irradiation treatment for liver carcinoma. The purpose of this study was to investigate the clinical application of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI (EOB-MRI) in the assessment of liver function after external radiation therapy and to determine the relationship between focal liver reaction (FLR) and liver function. METHODS A total of 47 patients with liver malignancies who underwent external beam radiation therapy were enrolled. EOB-MRI was performed on each patient at approximately one month post-radiotherapy. The hepatobiliary (HPB) phase images from EOB-MRI were fused with the planning CT images, and the isodose lines from the patients' treatment plans were overlaid onto the fused images. The correlation of the EOB-MR image intensity distribution with the isodose lines was studied. We also compared liver function in patients between pre-treatment and post-treatment. RESULTS Decreased uptake of Gd-EOB-DTPA, which was manifested by well-demarcated focal hypointensity of the liver parenchyma or FLR to high-dose radiation, was observed in the irradiated areas of 38 patients. The radiotherapy isodose line of decreased uptake area of Gd-EOB-DTPA was 30-46 Gy. The median corresponding dose curve of FLR was 34.4 Gy. Nine patients showed the absence of decreased uptake area of Gd-EOB-DTPA in the irradiated areas. Compared to the 38 patients with the presence of decreased uptake area of Gd-EOB-DTPA, 9 patients with the absence of decreased uptake area of Gd-EOB-DTPA showed significant higher levels of total bile acid, total bilirubin, direct bilirubin and alpha-fetoprotein (P < 0.05). There were no significant differences in alanine transaminase, aspartate aminotransferase, gamma-glutamyl transpeptidase or albumin levels between the two groups (P > 0.05). CONCLUSIONS Visible uptake of Gd-EOB-DTPA by the liver parenchyma was significantly associated with liver function parameters. EOB-MRI can be a valuable imaging biomarker for the assessment of liver parenchyma function outside of radiation area.
Collapse
Affiliation(s)
- Xiao-Li Sun
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xue Jiang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yu Kuang
- Medical Physics Program, University of Nevada, Las Vegas, NV 89154, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lu-Yi Bu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shuang-Hu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jin-Ming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Shu-Sen Zheng
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
7
|
Kim DH, Choi SH, Kim SY, Kim MJ, Lee SS, Byun JH. Gadoxetic Acid-enhanced MRI of Hepatocellular Carcinoma: Value of Washout in Transitional and Hepatobiliary Phases. Radiology 2019; 291:651-657. [PMID: 30990381 DOI: 10.1148/radiol.2019182587] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Current Liver Imaging Reporting and Data System guidelines define the washout appearance of gadoxetic acid-enhanced MRI only during the portal venous phase. Defining washout only during the portal venous phase may lead to lower sensitivity for diagnosis of hepatocellular carcinoma (HCC). Purpose To compare the diagnostic performances of three gadoxetic acid-enhanced MRI criteria for HCC according to the phases during which washout appearance was determined. Materials and Methods In this retrospective study, patients with a hepatic nodule detected at US surveillance for HCC from January to December 2012 underwent gadoxetic acid-enhanced MRI. Three diagnostic MRI criteria for HCC were defined according to the phases during which washout appearance was observed, with the presence of arterial phase hyperenhancement and hypointensity noted (a) only during the portal venous phase, with washout confined to the portal venous phase; (b) during the portal venous phase or transitional phase, with washout extended to the transitional phase; or (c) during the portal venous, transitional, or hepatobiliary phase, with washout extended to the hepatobiliary phase. If a nodule showed marked T2 hyperintensity or a targetoid appearance, it was precluded from the diagnosis of HCC. The sensitivity and specificity were compared by using a generalized estimating equation. Results A total of 178 patients were included (mean age ± standard deviation, 55.3 years ± 9.1) with 203 surgically confirmed hepatic nodules (186 HCCs and 17 non-HCCs) measuring 3.0 cm or smaller. The sensitivity with washout extended to the hepatobiliary phase (95.2% [177 of 186]) was better than that with washout extended to the transitional phase (90.9% [169 of 186]; P = .01) and washout confined to the portal venous phase (75.3% [140 of 186]; P < .01). The specificity with extensions of washout to the transitional phase and hepatobiliary phase (82% [14 of 17] for both) was similar to that obtained with washout confined to the portal venous phase (94.1% [16 of 17]) (P = .47). Conclusion After exclusion of typical hemangiomas and nodules with a targetoid appearance, extending washout appearance to the transitional or hepatobiliary phase (instead of restricting it to the portal venous phase) allowed higher sensitivity without a reduction in specificity. © RSNA, 2019 See also the editorial by Fowler and Sirlin in this issue.
Collapse
Affiliation(s)
- Dong Hwan Kim
- From the Department of Radiology and Research Institute of Radiology (D.H.K., S.H.C., S.Y.K., S.S.L., J.H.B.) and Department of Clinical Epidemiology and Biostatistics (M.J.K.), University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Sang Hyun Choi
- From the Department of Radiology and Research Institute of Radiology (D.H.K., S.H.C., S.Y.K., S.S.L., J.H.B.) and Department of Clinical Epidemiology and Biostatistics (M.J.K.), University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul 05505, Republic of Korea
| | - So Yeon Kim
- From the Department of Radiology and Research Institute of Radiology (D.H.K., S.H.C., S.Y.K., S.S.L., J.H.B.) and Department of Clinical Epidemiology and Biostatistics (M.J.K.), University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Min-Ju Kim
- From the Department of Radiology and Research Institute of Radiology (D.H.K., S.H.C., S.Y.K., S.S.L., J.H.B.) and Department of Clinical Epidemiology and Biostatistics (M.J.K.), University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Seung Soo Lee
- From the Department of Radiology and Research Institute of Radiology (D.H.K., S.H.C., S.Y.K., S.S.L., J.H.B.) and Department of Clinical Epidemiology and Biostatistics (M.J.K.), University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Jae Ho Byun
- From the Department of Radiology and Research Institute of Radiology (D.H.K., S.H.C., S.Y.K., S.S.L., J.H.B.) and Department of Clinical Epidemiology and Biostatistics (M.J.K.), University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul 05505, Republic of Korea
| |
Collapse
|
8
|
Galle PR, Forner A, Llovet JM, Mazzaferro V, Piscaglia F, Raoul JL, Schirmacher P, Vilgrain V. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol 2018; 69:182-236. [PMID: 29628281 DOI: 10.1016/j.jhep.2018.03.019] [Citation(s) in RCA: 5915] [Impact Index Per Article: 845.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
|
9
|
Roberts LR, Sirlin CB, Zaiem F, Almasri J, Prokop LJ, Heimbach JK, Murad MH, Mohammed K. Imaging for the diagnosis of hepatocellular carcinoma: A systematic review and meta-analysis. Hepatology 2018; 67:401-421. [PMID: 28859233 DOI: 10.1002/hep.29487] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/31/2017] [Accepted: 08/29/2017] [Indexed: 12/07/2022]
Abstract
UNLABELLED Multiphasic computed tomography (CT) and magnetic resonance imaging (MRI) are both used for noninvasive diagnosis of hepatocellular carcinoma (HCC) in patients with cirrhosis. To determine if there is a relative diagnostic benefit of one over the other, we synthesized evidence regarding the relative performance of CT, extracellular contrast-enhanced MRI, and gadoxetate-enhanced MRI for diagnosis of HCC in patients with cirrhosis. We also assessed whether liver biopsy versus follow-up with the same versus alternative imaging is best for CT-indeterminate or MRI-indeterminate liver nodules in patients with cirrhosis. We searched multiple databases from inception to April 27, 2016, for studies comparing CT with extracellular contrast-enhanced MRI or gadoxetate-enhanced MRI in adults with cirrhosis and suspected HCC. Two reviewers independently selected studies and extracted data. Of 33 included studies, 19 were comprehensive, while 14 reported sensitivity only. For all tumor sizes, the 19 comprehensive comparisons showed significantly higher sensitivity (0.82 versus 0.66) and lower negative likelihood ratio (0.20 versus 0.37) for MRI over CT. The specificities of MRI versus CT (0.91 versus 0.92) and the positive likelihood ratios (8.8 versus 8.1) were not different. All three modalities performed better for HCCs ≥2 cm. Performance was poor for HCCs <1 cm. No studies examined whether adults with cirrhosis and an indeterminate nodule are best evaluated using biopsy, repeated imaging, or alternative imaging. Concerns about publication bias, inconsistent study results, increased risk of bias, and clinical factors precluded support for exclusive use of either gadoxetate-enhanced or extracellular contrast-enhanced MRI over CT. CONCLUSION CT, extracellular contrast-enhanced MRI, or gadoxetate-enhanced MRI could not be definitively preferred for HCC diagnosis in patients with cirrhosis; in patients with cirrhosis and an indeterminate mass, there were insufficient data comparing biopsy to repeat cross-sectional imaging or alternative imaging. (Hepatology 2018;67:401-421).
Collapse
Affiliation(s)
- Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA
| | - Feras Zaiem
- Evidence-Based Practice Center, Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Jehad Almasri
- Evidence-Based Practice Center, Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Larry J Prokop
- Evidence-Based Practice Center, Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Julie K Heimbach
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - M Hassan Murad
- Evidence-Based Practice Center, Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Khaled Mohammed
- Evidence-Based Practice Center, Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic College of Medicine and Science, Rochester, MN
| |
Collapse
|