1
|
Meliambro K, He JC, Campbell KN. Podocyte-targeted therapies - progress and future directions. Nat Rev Nephrol 2024; 20:643-658. [PMID: 38724717 DOI: 10.1038/s41581-024-00843-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 09/14/2024]
Abstract
Podocytes are the key target cells for injury across the spectrum of primary and secondary proteinuric kidney disorders, which account for up to 90% of cases of kidney failure worldwide. Seminal experimental and clinical studies have established a causative link between podocyte depletion and the magnitude of proteinuria in progressive glomerular disease. However, no substantial advances have been made in glomerular disease therapies, and the standard of care for podocytopathies relies on repurposed immunosuppressive drugs. The past two decades have seen a remarkable expansion in understanding of the mechanistic basis of podocyte injury, with prospects increasing for precision-based treatment approaches. Dozens of disease-causing genes with roles in the pathogenesis of clinical podocytopathies have been identified, as well as a number of putative glomerular permeability factors. These achievements, together with the identification of novel targets of podocyte injury, the development of potential approaches to harness the endogenous podocyte regenerative potential of progenitor cell populations, ongoing clinical trials of podocyte-specific pharmacological agents and the development of podocyte-directed drug delivery systems, contribute to an optimistic outlook for the future of glomerular disease therapy.
Collapse
Affiliation(s)
- Kristin Meliambro
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirk N Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Kaiser-Graf D, Schulz A, Mangelsen E, Rothe M, Bolbrinker J, Kreutz R. Tissue lipidomic profiling supports a mechanistic role of the prostaglandin E2 pathway for albuminuria development in glomerular hyperfiltration. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1271042. [PMID: 38205443 PMCID: PMC10777844 DOI: 10.3389/fnetp.2023.1271042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024]
Abstract
Background: Glomerular hyperfiltration (GH) is an important mechanism in the development of albuminuria in hypertension. The Munich Wistar Frömter (MWF) rat is a non-diabetic model of chronic kidney disease (CKD) with GH due to inherited low nephron number resulting in spontaneous albuminuria and podocyte injury. In MWF rats, we identified prostaglandin (PG) E2 (PGE2) signaling as a potential causative mechanism of albuminuria in GH. Method: For evaluation of the renal PGE2 metabolic pathway, time-course lipidomic analysis of PGE2 and its downstream metabolites 15-keto-PGE2 and 13-14-dihydro-15-keto-PGE2 was conducted in urine, plasma and kidney tissues of MWF rats and albuminuria-resistant spontaneously hypertensive rats (SHR) by liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS). Results: Lipidomic analysis revealed no dysregulation of plasma PGs over the time course of albuminuria development, while glomerular levels of PGE2 and 15-keto-PGE2 were significantly elevated in MWF compared to albuminuria-resistant SHR. Overall, averaged PGE2 levels in glomeruli were up to ×150 higher than the corresponding 15-keto-PGE2 levels. Glomerular metabolic ratios of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) were significantly lower, while metabolic ratios of prostaglandin reductases (PTGRs) were significantly higher in MWF rats with manifested albuminuria compared to SHR, respectively. Conclusion: Our data reveal glomerular dysregulation of the PGE2 metabolism in the development of albuminuria in GH, resulting at least partly from reduced PGE2 degradation. This study provides first insights into dynamic changes of the PGE2 pathway that support a role of glomerular PGE2 metabolism and signaling for early albuminuria manifestation in GH.
Collapse
Affiliation(s)
- Debora Kaiser-Graf
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Angela Schulz
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Mangelsen
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | - Juliane Bolbrinker
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Reinhold Kreutz
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Srivastava T, Garola RE, Zhou J, Boinpelly VC, Priya L, Ali MF, Rezaiekhaligh MH, Heruth DP, Novak J, Alon US, Joshi T, Jiang Y, McCarthy ET, Savin VJ, Johnson ML, Sharma R, Sharma M. Prostanoid receptors in hyperfiltration-mediated glomerular injury: Novel agonists and antagonists reveal opposing roles for EP2 and EP4 receptors. FASEB J 2022; 36:e22559. [PMID: 36125047 DOI: 10.1096/fj.202200875r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/23/2022] [Accepted: 09/07/2022] [Indexed: 11/11/2022]
Abstract
Increased fluid-flow shear stress (FFSS) contributes to hyperfiltration-induced podocyte and glomerular injury resulting in progression of chronic kidney disease (CKD). We reported that increased FFSS in vitro and in vivo upregulates PGE2 receptor EP2 (but not EP4 expression), COX2-PGE2 -EP2 axis, and EP2-linked Akt-GSK3β-β-catenin signaling pathway in podocytes. To understand and use the disparities between PGE2 receptors, specific agonists, and antagonists of EP2 and EP4 were used to assess phosphorylation of Akt, GSK3β and β-catenin in podocytes using Western blotting, glomerular filtration barrier function using in vitro albumin permeability (Palb ) assay, and mitigation of hyperfiltration-induced injury in unilaterally nephrectomized (UNX) mice at 1 and 6 months. Results show an increase in Palb by PGE2 , EP2 agonist (EP2AGO ) and EP4 antagonist (EP4ANT ), but not by EP2 antagonist (EP2ANT ) or EP4 agonist (EP4AGO ). Pretreatment with EP2ANT blocked the effect of PGE2 or EP2AGO on Palb . Modulation of EP2 and EP4 also induced opposite effects on phosphorylation of Akt and β-Catenin. Individual agonists or antagonists of EP2 or EP4 did not induce significant improvement in albuminuria in UNX mice. However, treatment with a combination EP2ANT + EP4AGO for 1 or 6 months caused a robust decrease in albuminuria. EP2ANT + EP4AGO combination did not impact adaptive hypertrophy or increased serum creatinine. Observed differences between expression of EP2 and EP4 on the glomerular barrier highlight these receptors as potential targets for intervention. Safe and effective mitigating effect of EP2ANT + EP4AGO presents a novel opportunity to delay the progression of hyperfiltration-associated CKD as seen in transplant donors.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA.,Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, Missouri, USA.,Department of Oral and Craniofacial Sciences, University of Missouri at Kansas City-School of Dentistry, Kansas City, Missouri, USA
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA
| | - Jianping Zhou
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, Missouri, USA.,Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Varun C Boinpelly
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, Missouri, USA.,Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Lakshmi Priya
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA
| | - Mohammed Farhan Ali
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA
| | - Mohammad H Rezaiekhaligh
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA
| | - Daniel P Heruth
- Children's Mercy Research Institute, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, Missouri, USA.,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Ellen T McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Virginia J Savin
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, Missouri, USA.,Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, University of Missouri at Kansas City-School of Dentistry, Kansas City, Missouri, USA
| | - Ram Sharma
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Mukut Sharma
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, Missouri, USA.,Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, Missouri, USA.,Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
4
|
Wang D, Gust M, Ferrell N. Kidney-on-a-Chip: Mechanical Stimulation and Sensor Integration. SENSORS (BASEL, SWITZERLAND) 2022; 22:6889. [PMID: 36146238 PMCID: PMC9503911 DOI: 10.3390/s22186889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Bioengineered in vitro models of the kidney offer unprecedented opportunities to better mimic the in vivo microenvironment. Kidney-on-a-chip technology reproduces 2D or 3D features which can replicate features of the tissue architecture, composition, and dynamic mechanical forces experienced by cells in vivo. Kidney cells are exposed to mechanical stimuli such as substrate stiffness, shear stress, compression, and stretch, which regulate multiple cellular functions. Incorporating mechanical stimuli in kidney-on-a-chip is critically important for recapitulating the physiological or pathological microenvironment. This review will explore approaches to applying mechanical stimuli to different cell types using kidney-on-a-chip models and how these systems are used to study kidney physiology, model disease, and screen for drug toxicity. We further discuss sensor integration into kidney-on-a-chip for monitoring cellular responses to mechanical or other pathological stimuli. We discuss the advantages, limitations, and challenges associated with incorporating mechanical stimuli in kidney-on-a-chip models for a variety of applications. Overall, this review aims to highlight the importance of mechanical stimuli and sensor integration in the design and implementation of kidney-on-a-chip devices.
Collapse
Affiliation(s)
- Dan Wang
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Matthew Gust
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Statistics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas Ferrell
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (Lond) 2022; 136:493-520. [PMID: 35415751 PMCID: PMC9008595 DOI: 10.1042/cs20210625] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Albuminuria is the hallmark of both primary and secondary proteinuric glomerulopathies, including focal segmental glomerulosclerosis (FSGS), obesity-related nephropathy, and diabetic nephropathy (DN). Moreover, albuminuria is an important feature of all chronic kidney diseases (CKDs). Podocytes play a key role in maintaining the permselectivity of the glomerular filtration barrier (GFB) and injury of the podocyte, leading to foot process (FP) effacement and podocyte loss, the unifying underlying mechanism of proteinuric glomerulopathies. The metabolic insult of hyperglycemia is of paramount importance in the pathogenesis of DN, while insults leading to podocyte damage are poorly defined in other proteinuric glomerulopathies. However, shared mechanisms of podocyte damage have been identified. Herein, we will review the role of haemodynamic and oxidative stress, inflammation, lipotoxicity, endocannabinoid (EC) hypertone, and both mitochondrial and autophagic dysfunction in the pathogenesis of the podocyte damage, focussing particularly on their role in the pathogenesis of DN. Gaining a better insight into the mechanisms of podocyte injury may provide novel targets for treatment. Moreover, novel strategies for boosting podocyte repair may open the way to podocyte regenerative medicine.
Collapse
|
6
|
Sharma M, Singh V, Sharma R, Koul A, McCarthy ET, Savin VJ, Joshi T, Srivastava T. Glomerular Biomechanical Stress and Lipid Mediators during Cellular Changes Leading to Chronic Kidney Disease. Biomedicines 2022; 10:407. [PMID: 35203616 PMCID: PMC8962328 DOI: 10.3390/biomedicines10020407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperfiltration is an important underlying cause of glomerular dysfunction associated with several systemic and intrinsic glomerular conditions leading to chronic kidney disease (CKD). These include obesity, diabetes, hypertension, focal segmental glomerulosclerosis (FSGS), congenital abnormalities and reduced renal mass (low nephron number). Hyperfiltration-associated biomechanical forces directly impact the cell membrane, generating tensile and fluid flow shear stresses in multiple segments of the nephron. Ongoing research suggests these biomechanical forces as the initial mediators of hyperfiltration-induced deterioration of podocyte structure and function leading to their detachment and irreplaceable loss from the glomerular filtration barrier. Membrane lipid-derived polyunsaturated fatty acids (PUFA) and their metabolites are potent transducers of biomechanical stress from the cell surface to intracellular compartments. Omega-6 and ω-3 long-chain PUFA from membrane phospholipids generate many versatile and autacoid oxylipins that modulate pro-inflammatory as well as anti-inflammatory autocrine and paracrine signaling. We advance the idea that lipid signaling molecules, related enzymes, metabolites and receptors are not just mediators of cellular stress but also potential targets for developing novel interventions. With the growing emphasis on lifestyle changes for wellness, dietary fatty acids are potential adjunct-therapeutics to minimize/treat hyperfiltration-induced progressive glomerular damage and CKD.
Collapse
Affiliation(s)
- Mukut Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Vikas Singh
- Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Arnav Koul
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Ellen T. McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Virginia J. Savin
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65201, USA;
| | - Tarak Srivastava
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri, Kansas City, MO 64108, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| |
Collapse
|
7
|
Srivastava T, Joshi T, Heruth DP, Rezaiekhaligh MH, Garola RE, Zhou J, Boinpelly VC, Ali MF, Alon US, Sharma M, Vanden Heuvel GB, Mahajan P, Priya L, Jiang Y, McCarthy ET, Savin VJ, Sharma R, Sharma M. A mouse model of prenatal exposure to Interleukin-6 to study the developmental origin of health and disease. Sci Rep 2021; 11:13260. [PMID: 34168254 PMCID: PMC8225793 DOI: 10.1038/s41598-021-92751-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic inflammation in pregnant obese women is associated with 1.5- to 2-fold increase in serum Interleukin-6 (IL-6) and newborns with lower kidney/body weight ratio but the role of IL-6 in increased susceptibility to chronic kidney (CKD) in adult progeny is not known. Since IL-6 crosses the placental barrier, we administered recombinant IL-6 (10 pg/g) to pregnant mice starting at mid-gestation yielded newborns with lower body (p < 0.001) and kidney (p < 0.001) weights. Histomorphometry indicated decreased nephrogenic zone width (p = 0.039) with increased numbers of mature glomeruli (p = 0.002) and pre-tubular aggregates (p = 0.041). Accelerated maturation in IL-6 newborns was suggested by early expression of podocyte-specific protein podocin in glomeruli, increased 5-methyl-cytosine (LC–MS analysis for CpG DNA methylation) and altered expression of certain genes of cell-cycle and apoptosis (RT-qPCR array-analysis). Western blotting showed upregulated pJAK2/pSTAT3. Thus, treating dams with IL-6 as a surrogate provides newborns to study effects of maternal systemic inflammation on future susceptibility to CKD in adulthood.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA. .,Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA. .,Department of Oral and Craniofacial Sciences, University of Missouri at Kansas City-School of Dentistry, Kansas City, MO, USA.
| | - Trupti Joshi
- Department of Health Management and Informatics and MU Informatics Institute, University of Missouri, Columbia, MO, USA.,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,MU Data Science and Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Daniel P Heruth
- Children's Mercy Research Institute, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | - Mohammad H Rezaiekhaligh
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | - Jianping Zhou
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA.,Kansas City VA Medical Center, Kansas City, MO, USA
| | - Varun C Boinpelly
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA.,Kansas City VA Medical Center, Kansas City, MO, USA
| | - Mohammed Farhan Ali
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Madhulika Sharma
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gregory B Vanden Heuvel
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Pramod Mahajan
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA, USA
| | - Lakshmi Priya
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Ellen T McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Virginia J Savin
- Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ram Sharma
- Kansas City VA Medical Center, Kansas City, MO, USA
| | - Mukut Sharma
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA.,Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
8
|
Srivastava T, Heruth DP, Duncan RS, Rezaiekhaligh MH, Garola RE, Priya L, Zhou J, Boinpelly VC, Novak J, Ali MF, Joshi T, Alon US, Jiang Y, McCarthy ET, Savin VJ, Sharma R, Johnson ML, Sharma M. Transcription Factor β-Catenin Plays a Key Role in Fluid Flow Shear Stress-Mediated Glomerular Injury in Solitary Kidney. Cells 2021; 10:cells10051253. [PMID: 34069476 PMCID: PMC8159099 DOI: 10.3390/cells10051253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 01/21/2023] Open
Abstract
Increased fluid flow shear stress (FFSS) in solitary kidney alters podocyte function in vivo. FFSS-treated cultured podocytes show upregulated AKT-GSK3β-β-catenin signaling. The present study was undertaken to confirm (i) the activation of β-catenin signaling in podocytes in vivo using unilaterally nephrectomized (UNX) TOPGAL mice with the β-galactosidase reporter gene for β-catenin activation, (ii) β-catenin translocation in FFSS-treated mouse podocytes, and (iii) β-catenin signaling using publicly available data from UNX mice. The UNX of TOPGAL mice resulted in glomerular hypertrophy and increased the mesangial matrix consistent with hemodynamic adaptation. Uninephrectomized TOPGAL mice showed an increased β-galactosidase expression at 4 weeks but not at 12 weeks, as assessed using immunofluorescence microscopy (p < 0.001 at 4 weeks; p = 0.16 at 12 weeks) and X-gal staining (p = 0.008 at 4 weeks; p = 0.65 at 12 weeks). Immunofluorescence microscopy showed a significant increase in phospho-β-catenin (Ser552, p = 0.005) at 4 weeks but not at 12 weeks (p = 0.935) following UNX, and the levels of phospho-β-catenin (Ser675) did not change. In vitro FFSS caused a sustained increase in the nuclear translocation of phospho-β-catenin (Ser552) but not phospho-β-catenin (Ser675) in podocytes. The bioinformatic analysis of the GEO dataset, #GSE53996, also identified β-catenin as a key upstream regulator. We conclude that transcription factor β-catenin mediates FFSS-induced podocyte (glomerular) injury in solitary kidney.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA; (M.H.R.); (L.P.); (M.F.A.); (U.S.A.)
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City, MO 64128, USA; (J.Z.); (V.C.B.); (M.S.)
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri at Kansas City, Kansas City, MO 64108, USA;
- Correspondence: ; Tel.: +1-816-234-3010; Fax: +1-816-302-9919
| | - Daniel P. Heruth
- Children’s Mercy Research Institute, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA;
| | - R. Scott Duncan
- School of Biological Sciences, University of Missouri at Kansas City, Kansas City, MO 64108, USA;
| | - Mohammad H. Rezaiekhaligh
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA; (M.H.R.); (L.P.); (M.F.A.); (U.S.A.)
| | - Robert E. Garola
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA;
| | - Lakshmi Priya
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA; (M.H.R.); (L.P.); (M.F.A.); (U.S.A.)
| | - Jianping Zhou
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City, MO 64128, USA; (J.Z.); (V.C.B.); (M.S.)
- Kansas City VA Medical Center, Kansas City, MO 64128, USA; (V.J.S.); (R.S.)
| | - Varun C. Boinpelly
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City, MO 64128, USA; (J.Z.); (V.C.B.); (M.S.)
- Kansas City VA Medical Center, Kansas City, MO 64128, USA; (V.J.S.); (R.S.)
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35487, USA;
| | - Mohammed Farhan Ali
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA; (M.H.R.); (L.P.); (M.F.A.); (U.S.A.)
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65211, USA;
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA;
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- MU Data Science and Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Uri S. Alon
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA; (M.H.R.); (L.P.); (M.F.A.); (U.S.A.)
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA;
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Ellen T. McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Virginia J. Savin
- Kansas City VA Medical Center, Kansas City, MO 64128, USA; (V.J.S.); (R.S.)
| | - Ram Sharma
- Kansas City VA Medical Center, Kansas City, MO 64128, USA; (V.J.S.); (R.S.)
| | - Mark L. Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri at Kansas City, Kansas City, MO 64108, USA;
| | - Mukut Sharma
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City, MO 64128, USA; (J.Z.); (V.C.B.); (M.S.)
- Kansas City VA Medical Center, Kansas City, MO 64128, USA; (V.J.S.); (R.S.)
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
9
|
The mechanobiology of kidney podocytes in health and disease. Clin Sci (Lond) 2020; 134:1245-1253. [PMID: 32501496 DOI: 10.1042/cs20190764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023]
Abstract
Chronic kidney disease (CKD) substantially reduces quality of life and leads to premature death for thousands of people each year. Dialysis and kidney organ transplants remain prevalent therapeutic avenues but carry significant medical, economic and social burden. Podocytes are responsible for blood filtration selectivity in the kidney, where they extend a network of foot processes (FPs) from their cell bodies which surround endothelial cells and interdigitate with those on neighbouring podocytes to form narrow slit diaphragms (SDs). During aging, some podocytes are lost naturally but accelerated podocyte loss is a hallmark of CKD. Insights into the origin of degenerative podocyte loss will help answer important questions about kidney function and lead to substantial health benefits. Here, approaches that uncover insights into podocyte mechanobiology are reviewed, both those that interrogate the biophysical properties of podocytes and how the external physical environment affects podocyte behaviour, and also those that interrogate the biophysical effects that podocytes exert on their surroundings.
Collapse
|
10
|
Srivastava T, Joshi T, Jiang Y, Heruth DP, Rezaiekhaligh MH, Novak J, Staggs VS, Alon US, Garola RE, El-Meanawy A, McCarthy ET, Zhou J, Boinpelly VC, Sharma R, Savin VJ, Sharma M. Upregulated proteoglycan-related signaling pathways in fluid flow shear stress-treated podocytes. Am J Physiol Renal Physiol 2020; 319:F312-F322. [PMID: 32628542 DOI: 10.1152/ajprenal.00183.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ultrafiltrate flow over the major processes and cell body generates fluid flow shear stress (FFSS) on podocytes. Hyperfiltration-associated increase in FFSS can lead to podocyte injury and detachment. Previously, we showed that FFSS-induced upregulation of the cyclooxygenase 2 (COX2)-PGE2-prostaglandin E receptor 2 (EP2) axis in podocytes activates Akt-glycogen synthase kinase-3β-β-catenin and MAPK/ERK signaling in response to FFSS. Integrative MultiOmics Pathway Resolution (IMPRes) is a new bioinformatic tool that enables simultaneous time-series analysis of more than two groups to identify pathways and molecular connections. In the present study, we used previously characterized COX2 [prostaglandin-endoperoxide synthase 2 (Ptgs2)], EP2 (Ptger2), and β1-catenin (Ctnnb1) as "seed genes" from an array data set of four groups analyzed over a time course. The 3 seed genes shared 7 pathways and 50 genes of 14 pathways and 89 genes identified by IMPRes. A composite of signaling pathways highlighted the temporal molecular connections during mechanotransduction signaling in FFSS-treated podocytes. We investigated the "proteoglycans in cancer" and "galactose metabolism" pathways predicted by IMPRes. A custom-designed PCR array validated 60.7% of the genes predicted by IMPRes analysis, including genes for the above-named pathways. Further validation using Western blot analysis showed increased expression of phosho-Erbb2, phospho-mammalian target of rapamycin (mTOR), CD44, and hexokinase II (Hk2); decreased total Erbb2, galactose mutarotase (Galm), and β-1,4-galactosyltransferase 1 (B4galt1); and unchanged total mTOR and AKT3. These findings corroborate our previously reported results. This study demonstrates the potential of the IMPRes method to identify novel pathways. Identifying the "proteoglycans in cancer" and "galactose metabolism" pathways has generated a lead to study the significance of FFSS-induced glycocalyx remodeling and possible detachment of podocytes from the glomerular matrix.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri, Kansas City, Missouri.,Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Department of Oral and Craniofacial Sciences, University of Missouri School of Dentistry, Kansas City, Missouri
| | - Trupti Joshi
- Department of Health Management and Informatics and University of Missouri Informatics Institute, University of Missouri, Columbia, Missouri.,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,MU Data Science and Informatics Institute, University of Missouri, Columbia, Missouri
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Daniel P Heruth
- Children's Mercy Research Institute, Children's Mercy Hospital and University of Missouri, Kansas City, Missouri
| | - Mohamed H Rezaiekhaligh
- Section of Nephrology, Children's Mercy Hospital and University of Missouri, Kansas City, Missouri
| | - Jan Novak
- Department of Microbiology, University of Alabama, Birmingham, Alabama
| | - Vincent S Staggs
- Biostatistics and Epidemiology Core, Children's Mercy Kansas City, Department of Pediatrics, University of Missouri, Kansas City, Missouri
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri, Kansas City, Missouri
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri, Kansas City
| | - Ashraf El-Meanawy
- Division of Nephrology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ellen T McCarthy
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Jianping Zhou
- Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Varun C Boinpelly
- Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Ram Sharma
- Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Virginia J Savin
- Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Mukut Sharma
- Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| |
Collapse
|
11
|
McArdle Z, Schreuder MF, Moritz KM, Denton KM, Singh RR. Physiology and Pathophysiology of Compensatory Adaptations of a Solitary Functioning Kidney. Front Physiol 2020; 11:725. [PMID: 32670095 PMCID: PMC7332829 DOI: 10.3389/fphys.2020.00725] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Children born with a solitary functioning kidney (SFK) have an increased risk of hypertension and kidney disease from early in adulthood. In response to a reduction in kidney mass, the remaining kidney undergoes compensatory kidney growth. This is associated with both an increase in size of the kidney tubules and the glomeruli and an increase in single nephron glomerular filtration rate (SNGFR). The compensatory hypertrophy and increase in filtration at the level of the individual nephron results in normalization of total glomerular filtration rate (GFR). However, over time these same compensatory mechanisms may contribute to kidney injury and hypertension. Indeed, approximately 50% of children born with a SFK develop hypertension by the age of 18 and 20–40% require dialysis by the age of 30. The mechanisms that result in kidney injury are only partly understood, and early biomarkers that distinguish those at an elevated risk of kidney injury are needed. This review will outline the compensatory adaptations to a SFK, and outline how these adaptations may contribute to kidney injury and hypertension later in life. These will be based largely on the mechanisms we have identified from our studies in an ovine model of SFK, that implicate the renal nitric oxide system, the renin angiotensin system and the renal nerves to kidney disease and hypertension associated with SFK. This discussion will also evaluate current, and speculate on next generation, prognostic factors that may predict those children at a higher risk of future kidney disease and hypertension.
Collapse
Affiliation(s)
- Zoe McArdle
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Karen M Moritz
- Child Health Research Centre and School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Kate M Denton
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Reetu R Singh
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Concerted EP2 and EP4 Receptor Signaling Stimulates Autocrine Prostaglandin E 2 Activation in Human Podocytes. Cells 2020; 9:cells9051256. [PMID: 32438662 PMCID: PMC7290667 DOI: 10.3390/cells9051256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Glomerular hyperfiltration is an important mechanism in the development of albuminuria. During hyperfiltration, podocytes are exposed to increased fluid flow shear stress (FFSS) in Bowman’s space. Elevated Prostaglandin E2 (PGE2) synthesis and upregulated cyclooxygenase 2 (Cox2) are associated with podocyte injury by FFSS. We aimed to elucidate a PGE2 autocrine/paracrine pathway in human podocytes (hPC). We developed a modified liquid chromatography tandem mass spectrometry (LC/ESI-MS/MS) protocol to quantify cellular PGE2, 15-keto-PGE2, and 13,14-dihydro-15-keto-PGE2 levels. hPC were treated with PGE2 with or without separate or combined blockade of prostaglandin E receptors (EP), EP2, and EP4. Furthermore, the effect of FFSS on COX2, PTGER2, and PTGER4 expression in hPC was quantified. In hPC, stimulation with PGE2 led to an EP2- and EP4-dependent increase in cyclic adenosine monophosphate (cAMP) and COX2, and induced cellular PGE2. PTGER4 was downregulated after PGE2 stimulation in hPC. In the corresponding LC/ESI-MS/MS in vivo analysis at the tissue level, increased PGE2 and 15-keto-PGE2 levels were observed in isolated glomeruli obtained from a well-established rat model with glomerular hyperfiltration, the Munich Wistar Frömter rat. COX2 and PTGER2 were upregulated by FFSS. Our data thus support an autocrine/paracrine COX2/PGE2 pathway in hPC linked to concerted EP2 and EP4 signaling.
Collapse
|
13
|
Srivastava T, Ju W, Milne GL, Rezaiekhaligh MH, Staggs VS, Alon US, Sharma R, Zhou J, El-Meanawy A, McCarthy ET, Savin VJ, Sharma M. Urinary prostaglandin E 2 is a biomarker of early adaptive hyperfiltration in solitary functioning kidney. Prostaglandins Other Lipid Mediat 2019; 146:106403. [PMID: 31838197 DOI: 10.1016/j.prostaglandins.2019.106403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Hyperfiltration is a major contributor to progression of chronic kidney disease (CKD) in diabetes, obesity and in individuals with solitary functioning kidney (SFK). We have proposed hyperfiltration-induced injury as a continuum of overlapping glomerular changes caused by increased biomechanical forces namely, fluid flow shear stress (FFSS) and tensile stress. We have shown that FFSS is elevated in animals with SFK and, it upregulates prostaglandin E2 (PGE2), cyclooxygenase-2 and PGE2 receptor EP2 in cultured podocytes and in uninephrectomized mice. We conceptualized urinary PGE2 as a biomarker of early effects of hyperfiltration-induced injury preceding microalbuminuria in individuals with SFK. We studied children with SFK to validate our hypothesis. METHODS Urine samples from children with SFK and controls were analyzed for PGE2, albumin (glomerular injury biomarker) and epidermal growth factor (EGF, tubular injury biomarker). Age, gender, and Z-scores for height, weight, BMI, and blood pressure were obtained. RESULTS Children with SFK were comparable to controls except for lower BMI Z-scores. The median values were elevated in SFK compared to control for urine PGE2 [9.1 (n = 57) vs. 5.7 (n = 72), p = 0.009] ng/mgCr and albumin [7.6 (n = 40) vs. 7.0 (n = 41), p = 0.085] μg/mgCr, but not for EGF [20098 (n = 44) vs. 18637 (n = 44), p = 0.746] pg/mgCr. Significant increase in urinary PGE2 (p = 0.024) and albumin (p = 0.019) but not EGF (p = 0.412) was observed using additional regression modeling. These three urinary analytes were independent of each other. CONCLUSION Increased urinary PGE2 from elevated SNGFR and consequently increased FFSS during early stage of CKD precedes overt microalbuminuria and is a biomarker for early hyperfiltration-induced injury in individuals with SFK.
Collapse
Affiliation(s)
- Tarak Srivastava
- Division of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, United States; Research and Development, Nephrology, Kansas City VA Medical Center, Kansas City, MO, United States.
| | - Wenjun Ju
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Mohamed H Rezaiekhaligh
- Division of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, United States
| | - Vincent S Staggs
- Biostatistics & Epidemiology Core, Children's Mercy Kansas City, Department of Pediatrics, University of Missouri, Kansas City, United States
| | - Uri S Alon
- Division of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development, Nephrology, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Jianping Zhou
- Research and Development, Nephrology, Kansas City VA Medical Center, Kansas City, MO, United States; Midwest Biomedical Research Foundation (MBRF), KCVA Medical Center, Kansas City, MO, United States
| | - Ashraf El-Meanawy
- Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ellen T McCarthy
- Kidney Institute, Kansas University Medical Center, Kansas City, KS, United States
| | - Virginia J Savin
- Research and Development, Nephrology, Kansas City VA Medical Center, Kansas City, MO, United States; Kidney Institute, Kansas University Medical Center, Kansas City, KS, United States
| | - Mukut Sharma
- Research and Development, Nephrology, Kansas City VA Medical Center, Kansas City, MO, United States; Midwest Biomedical Research Foundation (MBRF), KCVA Medical Center, Kansas City, MO, United States; Kidney Institute, Kansas University Medical Center, Kansas City, KS, United States
| |
Collapse
|
14
|
Abstract
Kidney donors face a small but definite risk of end-stage renal disease 15 to 30 years postdonation. The development of proteinuria, hypertension with gradual decrease in kidney function in the donor after surgical resection of 1 kidney, has been attributed to hyperfiltration. Genetic variations, physiological adaptations, and comorbidities exacerbate the hyperfiltration-induced loss of kidney function in the years after donation. A focus on glomerular hemodynamics and capillary pressure has led to the development of drugs that target the renin-angiotensin-aldosterone system (RAAS), but these agents yield mixed results in transplant recipients and donors. Recent work on glomerular biomechanical forces highlights the differential effects of tensile stress and fluid flow shear stress (FFSS) from hyperfiltration. Capillary wall stretch due to glomerular capillary pressure increases tensile stress on podocyte foot processes that cover the capillary. In parallel, increased flow of the ultrafiltrate due to single-nephron glomerular filtration rate elevates FFSS on the podocyte cell body. Although tensile stress invokes the RAAS, FFSS predominantly activates the cyclooxygenase 2-prostaglandin E2-EP2 receptor axis. Distinguishing these 2 mechanisms is critical, as current therapeutic approaches focus on the RAAS system. A better understanding of the biomechanical forces can lead to novel therapeutic agents to target FFSS through the cyclooxygenase 2-prostaglandin E2-EP2 receptor axis in hyperfiltration-mediated injury. We present an overview of several aspects of the risk to transplant donors and discuss the relevance of FFSS in podocyte injury, loss of glomerular barrier function leading to albuminuria and gradual loss of renal function, and potential therapeutic strategies to mitigate hyperfiltration-mediated injury to the remaining kidney.
Collapse
|
15
|
Feng D, DuMontier C, Pollak MR. Mechanical challenges and cytoskeletal impairments in focal segmental glomerulosclerosis. Am J Physiol Renal Physiol 2018; 314:F921-F925. [PMID: 29363327 DOI: 10.1152/ajprenal.00641.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histologically defined form of kidney injury typically mediated by podocyte dysfunction. Podocytes rely on their intricate actin-based cytoskeleton to maintain the glomerular filtration barrier in the face of mechanical challenges resulting from pulsatile blood flow and filtration of this blood flow. This review summarizes the mechanical challenges faced by podocytes in the form of stretch and shear stress, both of which may play a role in the progression of podocyte dysfunction and detachment. It also reviews how podocytes respond to these mechanical challenges in dynamic fashion through rearranging their cytoskeleton, triggering various biochemical pathways, and, in some disease states, altering their morphology in the form of foot process effacement. Furthermore, this review highlights the growing body of evidence identifying several mutations of important cytoskeleton proteins as causes of FSGS. Lastly, it synthesizes the above evidence to show that a better understanding of how these mutations leave podocytes vulnerable to the mechanical challenges they face is essential to better understanding the mechanisms by which they lead to disease. The review concludes with future research directions to fill this gap and some novel techniques with which to pursue these directions.
Collapse
Affiliation(s)
- Di Feng
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center , Boston, Massachusetts.,Harvard Medical School , Boston, Massachusetts
| | - Clark DuMontier
- Harvard Medical School , Boston, Massachusetts.,Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Martin R Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center , Boston, Massachusetts.,Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
16
|
Srivastava T, Thiagarajan G, Alon US, Sharma R, El-Meanawy A, McCarthy ET, Savin VJ, Sharma M. Role of biomechanical forces in hyperfiltration-mediated glomerular injury in congenital anomalies of the kidney and urinary tract. Nephrol Dial Transplant 2018; 32:759-765. [PMID: 28339567 DOI: 10.1093/ndt/gfw430] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/15/2016] [Indexed: 11/13/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) including solitary kidney constitute the main cause of progressive chronic kidney disease (CKD) in children. Children born with CAKUT develop signs of CKD only during adolescence and do not respond to renin-angiotensin-aldosterone system blockers. Early cellular changes underlying CKD progression to end-stage renal disease by early adulthood are not well understood. The mechanism of maladaptive hyperfiltration that occurs from loss of functional nephrons, including solitary kidney, is not clear. We re-examine the phenomenon of hyperfiltration in the context of biomechanical forces with special reference to glomerular podocytes. Capillary stretch exerts tensile stress on podocytes through the glomerular basement membrane. The flow of ultrafiltrate over the cell surface directly causes fluid flow shear stress (FFSS) on podocytes. FFSS on the podocyte surface increases 1.5- to 2-fold in animal models of solitary kidney and its effect on podocytes is a subject of ongoing research. Podocytes (i) are mechanosensitive to tensile and shear forces, (ii) use prostaglandin E2, angiotensin-II or nitric oxide for mechanoperception and (iii) use specific signaling pathways for mechanotransduction. We discuss (i) the nature of and differences in cellular responses to biomechanical forces, (ii) methods to study biomechanical forces and (iii) effects of biomechanical forces on podocytes and glomeruli. Future studies on FFSS will likely identify novel targets for strategies for early intervention to complement and strengthen the current regimen for treating children with CAKUT.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA.,Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Ganesh Thiagarajan
- School of Computing and Engineering, University of Missouri at Kansas City, MO, USA
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | - Ram Sharma
- Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Ashraf El-Meanawy
- Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ellen T McCarthy
- Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Virginia J Savin
- Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Mukut Sharma
- Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Kansas City, MO, USA
| |
Collapse
|
17
|
Srivastava T, Dai H, Heruth DP, Alon US, Garola RE, Zhou J, Duncan RS, El-Meanawy A, McCarthy ET, Sharma R, Johnson ML, Savin VJ, Sharma M. Mechanotransduction signaling in podocytes from fluid flow shear stress. Am J Physiol Renal Physiol 2018; 314:F22-F34. [PMID: 28877882 PMCID: PMC5866353 DOI: 10.1152/ajprenal.00325.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022] Open
Abstract
Recently, we and others have found that hyperfiltration-associated increase in biomechanical forces, namely, tensile stress and fluid flow shear stress (FFSS), can directly and distinctly alter podocyte structure and function. The ultrafiltrate flow over the major processes and cell body generates FFSS to podocytes. Our previous work suggests that the cyclooxygenase-2 (COX-2)-PGE2-PGE2 receptor 2 (EP2) axis plays an important role in mechanoperception of FFSS in podocytes. To address mechanotransduction of the perceived stimulus through EP2, cultured podocytes were exposed to FFSS (2 dyn/cm2) for 2 h. Total RNA from cells at the end of FFSS treatment, 2-h post-FFSS, and 24-h post-FFSS was used for whole exon array analysis. Differentially regulated genes ( P < 0.01) were analyzed using bioinformatics tools Enrichr and Ingenuity Pathway Analysis to predict pathways/molecules. Candidate pathways were validated using Western blot analysis and then further confirmed to be resulting from a direct effect of PGE2 on podocytes. Results show that FFSS-induced mechanotransduction as well as exogenous PGE2 activate the Akt-GSK3β-β-catenin (Ser552) and MAPK/ERK but not the cAMP-PKA signal transduction cascades. These pathways are reportedly associated with FFSS-induced and EP2-mediated signaling in other epithelial cells as well. The current regimen for treating hyperfiltration-mediated injury largely depends on targeting the renin-angiotensin-aldosterone system. The present study identifies specific transduction mechanisms and provides novel information on the direct effect of FFSS on podocytes. These results suggest that targeting EP2-mediated signaling pathways holds therapeutic significance for delaying progression of chronic kidney disease secondary to hyperfiltration.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri at Kansas City , Kansas City, Missouri
| | - Hongying Dai
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Daniel P Heruth
- Department of Experimental and Translational Genetics Research, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Jianping Zhou
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
| | - R Scott Duncan
- Department of Ophthalmology, University of Missouri at Kansas City , Kansas City, Missouri
| | - Ashraf El-Meanawy
- Division of Nephrology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Ellen T McCarthy
- Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas
| | - Ram Sharma
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri at Kansas City , Kansas City, Missouri
| | - Virginia J Savin
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
- Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas
| | - Mukut Sharma
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
- Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas
| |
Collapse
|
18
|
Endlich K, Kliewe F, Endlich N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflugers Arch 2017; 469:937-949. [PMID: 28687864 DOI: 10.1007/s00424-017-2025-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
Increased glomerular capillary pressure (glomerular hypertension) and increased glomerular filtration rate (glomerular hyperfiltration) have been proven to cause glomerulosclerosis in animal models and are likely to be operative in patients. Since podocytes cover the glomerular basement membrane, they are exposed to tensile stress due to circumferential wall tension and to fluid shear stress arising from filtrate flow through the narrow filtration slits and through Bowman's space. In vitro evidence documents that podocytes respond to tensile stress as well as to fluid shear stress. Several proteins are discussed in this review that are expressed in podocytes and could act as mechanosensors converting mechanical force via a conformational change into a biochemical signal. The cation channels P2X4 and TRPC6 were shown to be involved in mechanosignaling in podocytes. P2X4 is activated by stretch-induced ATP release, while TRPC6 might be inherently mechanosensitive. Membrane, slit diaphragm and cell-matrix contact proteins are connected to the sublemmal actin network in podocytes via various linker proteins. Therefore, actin-associated proteins, like the proven mechanosensor filamin, are ideal candidates to sense forces in the podocyte cytoskeleton. Furthermore, podocytes express talin, p130Cas, and fibronectin that are known to undergo a conformational change in response to mechanical force exposing cryptic binding sites. Downstream of mechanosensors, experimental evidence suggests the involvement of MAP kinases, Ca2+ and COX2 in mechanosignaling and an emerging role of YAP/TAZ. In summary, our understanding of mechanotransduction in podocytes is still sketchy, but future progress holds promise to identify targets to alleviate conditions of increased mechanical load.
Collapse
Affiliation(s)
- Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany.
- Institut für Anatomie and Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, 17489, Greifswald, Germany.
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
19
|
Hyperfiltration-associated biomechanical forces in glomerular injury and response: Potential role for eicosanoids. Prostaglandins Other Lipid Mediat 2017; 132:59-68. [PMID: 28108282 DOI: 10.1016/j.prostaglandins.2017.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 12/29/2022]
Abstract
Hyperfiltration is a well-known risk factor in progressive loss of renal function in chronic kidney disease (CKD) secondary to various diseases. A reduced number of functional nephrons due to congenital or acquired cause(s) results in hyperfiltration in the remnant kidney. Hyperfiltration-associated increase in biomechanical forces, namely pressure-induced tensile stress and fluid flow-induced shear stress (FFSS) determine cellular injury and response. We believe the current treatment of CKD yields limited success because it largely attenuates pressure-induced tensile stress changes but not the effect of FFSS on podocytes. Studies on glomerular podocytes, tubular epithelial cells and bone osteocytes provide evidence for a significant role of COX-2 generated PGE2 and its receptors in response to tensile stress and FFSS. Preliminary observations show increased urinary PGE2 in children born with a solitary kidney. FFSS-induced COX2-PGE2-EP2 signaling provides an opportunity to identify targets and, for developing novel agents to complement currently available treatment.
Collapse
|
20
|
Quadri SS, Culver SA, Li C, Siragy HM. Interaction of the renin angiotensin and cox systems in the kidney. Front Biosci (Schol Ed) 2016; 8:215-26. [PMID: 27100703 DOI: 10.2741/s459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclooxygenase-2 (COX-2) plays an important role in mediating actions of the renin-angiotensin system (RAS). This review sheds light on the recent developments regarding the complex interactions between components of RAS and COX-2; and their implications on renal function and disease. COX-2 is believed to counter regulate the effects of RAS activation and therefore counter balance the vasoconstriction effect of Ang II. In kidney, under normal conditions, these systems are essential for maintaining a balance between vasodilation and vasoconstriction. However, recent studies suggested a pivotal role for this interplay in pathology. COX-2 increases the renin release and Ang II formation leading to increase in blood pressure. COX-2 is also associated with diabetic nephropathy, where its upregulation in the kidney contributes to glomerular injury and albuminuria. Selective inhibition of COX-2 retards the progression of renal injury. COX-2 also mediates the pathologic effects of the (Pro)renin receptor (PRR) in the kidney. In summary, this review discusses the interaction between the RAS and COX-2 in health and disease.
Collapse
Affiliation(s)
- Syed S Quadri
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, VA
| | - Silas A Culver
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, VA
| | - Caixia Li
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, VA
| | - Helmy M Siragy
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, VA,
| |
Collapse
|
21
|
Srivastava T, Alon US, Cudmore PA, Tarakji B, Kats A, Garola RE, Duncan RS, McCarthy ET, Sharma R, Johnson ML, Bonewald LF, El-Meanawy A, Savin VJ, Sharma M. Cyclooxygenase-2, prostaglandin E2, and prostanoid receptor EP2 in fluid flow shear stress-mediated injury in the solitary kidney. Am J Physiol Renal Physiol 2014; 307:F1323-33. [PMID: 25234310 DOI: 10.1152/ajprenal.00335.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hyperfiltration subjects podocytes to increased tensile stress and fluid flow shear stress (FFSS). We showed a 1.5- to 2.0-fold increase in FFSS in uninephrectomized animals and altered podocyte actin cytoskeleton and increased synthesis of prostaglandin E2 (PGE2) following in vitro application of FFSS. We hypothesized that increased FFSS mediates cellular changes through specific receptors of PGE2. Presently, we studied the effect of FFSS on cultured podocytes and decapsulated isolated glomeruli in vitro, and on solitary kidney in uninephrectomized sv129 mice. In cultured podocytes, FFSS resulted in increased gene and protein expression of cyclooxygenase (COX)-2 but not COX-1, prostanoid receptor EP2 but not EP4, and increased synthesis and secretion of PGE2, which were effectively blocked by indomethacin. Next, we developed a special flow chamber for applying FFSS to isolated glomeruli to determine its effect on an intact glomerular filtration barrier by measuring change in albumin permeability (Palb) in vitro. FFSS caused an increase in Palb that was blocked by indomethacin (P < 0.001). Finally, we show that unilateral nephrectomy in sv129 mice resulted in glomerular hypertrophy (P = 0.006), increased glomerular expression of COX-2 (P < 0.001) and EP2 (P = 0.039), and increased urinary albumin excretion (P = 0.001). Activation of the COX-2-PGE2-EP2 axis appears to be a specific response to FFSS in podocytes and provides a mechanistic basis for alteration in podocyte structure and the glomerular filtration barrier, leading to albuminuria in hyperfiltration-mediated kidney injury. The COX-2-PGE2-EP2 axis is a potential target for developing specific interventions to ameliorate the effects of hyperfiltration-mediated kidney injury in the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri; Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri;
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Patricia A Cudmore
- Section of Nephrology, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Belal Tarakji
- Section of Nephrology, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Alexander Kats
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - R Scott Duncan
- Section of Infectious Diseases, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Ellen T McCarthy
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Ram Sharma
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Mark L Johnson
- Department of Oral Biology, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri; and
| | - Lynda F Bonewald
- Department of Oral Biology, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri; and
| | - Ashraf El-Meanawy
- Division of Nephrology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Virginia J Savin
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas; Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Mukut Sharma
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas; Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| |
Collapse
|
22
|
Javaheri B, Stern AR, Lara N, Dallas M, Zhao H, Liu Y, Bonewald LF, Johnson ML. Deletion of a single β-catenin allele in osteocytes abolishes the bone anabolic response to loading. J Bone Miner Res 2014; 29:705-15. [PMID: 23929793 PMCID: PMC4171742 DOI: 10.1002/jbmr.2064] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/16/2013] [Accepted: 07/26/2013] [Indexed: 12/29/2022]
Abstract
The Wnt/β-catenin signaling pathway is essential for bone cell viability and function and for skeletal integrity. To determine if β-catenin in osteocytes plays a role in the bone anabolic response to mechanical loading, 18- to 24-week-old osteocyte β-catenin haploinsufficient mice (Dmp1-Cre × β-catenin fl/ + ; HET cKO) were compared with their β-catenin fl/fl (control) littermates. Trabecular bone volume (BV/TV) was significantly less (58.3%) in HET cKO females versus controls, whereas male HET cKO and control mice were not significantly different. Trabecular number was significantly less in HET cKO mice compared with controls for both genders, and trabecular separation was greater in female HET cKO mice. Osteoclast surface was significantly greater in female HET cKO mice. Cortical bone parameters in males and females showed subtle or no differences between HET cKO and controls. The right ulnas were loaded in vivo at 100 cycles, 2 Hz, 2500 µϵ, 3 days per week for 3 weeks, and the left ulnas served as nonloaded controls. Calcein and alizarin complexone dihydrate were injected 10 days and 3 days before euthanization, respectively. Micro-computed tomography (µCT) analysis detected an 8.7% and 7.1% increase in cortical thickness in the loaded right ulnas of male and female control mice, respectively, compared with their nonloaded left ulnas. No significant increase in new cortical bone formation was observed in the HET cKO mice. Histomorphometric analysis of control mice showed a significant increase in endocortical and periosteal mineral apposition rate (MAR), bone-formation rate/bone surface (BFR/BS), BFR/BV, and BFR/TV in response to loading, but no significant increases were detected in the loaded HET cKO mice. These data show that deleting a single copy of β-catenin in osteocytes abolishes the anabolic response to loading, that trabecular bone in females is more severely affected and suggest that a critical threshold of β-catenin is required for bone formation in response to mechanical loading.
Collapse
|
23
|
Srivastava T, Celsi GE, Sharma M, Dai H, McCarthy ET, Ruiz M, Cudmore PA, Alon US, Sharma R, Savin VA. Fluid flow shear stress over podocytes is increased in the solitary kidney. Nephrol Dial Transplant 2013; 29:65-72. [PMID: 24166460 DOI: 10.1093/ndt/gft387] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Glomerular hyperfiltration is emerging as the key risk factor for progression of chronic kidney disease (CKD). Podocytes are exposed to fluid flow shear stress (FFSS) caused by the flow of ultrafiltrate within Bowman's space. The mechanism of hyperfiltration-induced podocyte injury is not clear. We postulated that glomerular hyperfiltration in solitary kidney increases FFSS over podocytes. METHODS Infant Sprague-Dawley rats at 5 days of age and C57BL/6J 14-week-old adult mice underwent unilateral nephrectomy. Micropuncture and morphological studies were then performed on 20- and 60-day-old rats. FFSS over podocytes in uninephrectomized rats and mice was calculated using the recently published equation by Friedrich et al. which includes the variables-single nephron glomerular filtration rate (SNGFR), filtration fraction (f), glomerular tuft diameter (2RT) and width of Bowman's space (s). RESULTS Glomerular hypertrophy was observed in uninephrectomized rats and mice. Uninephrectomized rats on Day 20 showed a 2.0-fold increase in SNGFR, 1.0-fold increase in 2RT and 2.1-fold increase in FFSS, and on Day 60 showed a 1.9-fold increase in SNGFR, 1.3-fold increase in 2RT and 1.5-fold increase in FFSS, at all values of modeled 's'. Similarly, uninephrectomized mice showed a 2- to 3-fold increase in FFSS at all values of modeled SNGFR. CONCLUSIONS FFSS over podocytes is increased in solitary kidneys in both infant rats and adult mice. This increase is a consequence of increased SNGFR. We speculate that increased FFSS caused by reduced nephron number contributes to podocyte injury and promotes the progression of CKD.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kriz W, Shirato I, Nagata M, LeHir M, Lemley KV. The podocyte's response to stress: the enigma of foot process effacement. Am J Physiol Renal Physiol 2013; 304:F333-47. [DOI: 10.1152/ajprenal.00478.2012] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Progressive loss of podocytes is the most frequent cause accounting for end-stage renal failure. Podocytes are complex, terminally differentiated cells incapable of replicating. Thus lost podocytes cannot be replaced by proliferation of neighboring undamaged cells. Moreover, podocytes occupy a unique position as epithelial cells, adhering to the glomerular basement membrane (GBM) only by their processes, whereas their cell bodies float within the filtrate in Bowman's space. This exposes podocytes to the danger of being lost by detachment as viable cells from the GBM. Indeed, podocytes are continually excreted as viable cells in the urine, and the rate of excretion dramatically increases in glomerular diseases. Given this situation, it is likely that evolution has developed particular mechanisms whereby podocytes resist cell detachment. Podocytes respond to stress and injury by undergoing tremendous changes in shape. Foot process effacement is the most prominent and, yet in some ways, the most enigmatic of those changes. This review summarizes the various structural responses of podocytes to injury, focusing on foot process effacement and detachment. We raise the hypothesis that foot process effacement represents a protective response of podocytes to escape detachment from the GBM.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Anatomy and Developmental Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isao Shirato
- Division of Nephrology, Department of Internal Medicine, Juntendo University, School of Medicine, Tokyo, Japan
| | - Michio Nagata
- Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba-City, Japan
| | - Michel LeHir
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; and
| | - Kevin V. Lemley
- Division of Nephrology, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
25
|
Srivastava T, McCarthy ET, Sharma R, Kats A, Carlton CG, Alon US, Cudmore PA, El-Meanawy A, Sharma M. Fluid flow shear stress upregulates prostanoid receptor EP2 but not EP4 in murine podocytes. Prostaglandins Other Lipid Mediat 2012; 104-105:49-57. [PMID: 23262148 DOI: 10.1016/j.prostaglandins.2012.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/30/2012] [Accepted: 11/15/2012] [Indexed: 10/27/2022]
Abstract
Podocytes in the glomerular filtration barrier regulate the passage of plasma proteins into urine. Capillary pressure and ultrafiltration impact the structure and function of podocytes. The mechanism of podocyte injury by fluid flow shear stress (FFSS) from hyperfiltration in chronic kidney disease (CKD) is not completely understood. Recently, we demonstrated increased synthesis of prostaglandin E2 in podocytes exposed to FFSS. Here, we determine the effect of FFSS on prostanoid receptors EP1-EP4 in cultured podocytes and in Os/+ mouse kidney, a model of hyperfiltration. Results of RT-PCR, qRT-PCR, immunoblotting and immunofluorescence studies indicate that cultured podocytes express EP1, EP2 and EP4 but not EP3. FFSS resulted in upregulated expression of only EP2 in podocytes. Kidney immunostaining showed significantly increased expression of EP2 in Os/+ mice compared with littermate controls. These novel results suggest that EP2 may be responsible for mediating podocyte injury from hyperfiltration-induced augmented FFSS in CKD.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Srivastava T, Sharma M, Yew KH, Sharma R, Duncan RS, Saleem MA, McCarthy ET, Kats A, Cudmore PA, Alon US, Harrison CJ. LPS and PAN-induced podocyte injury in an in vitro model of minimal change disease: changes in TLR profile. J Cell Commun Signal 2012; 7:49-60. [PMID: 23161414 DOI: 10.1007/s12079-012-0184-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 11/06/2012] [Indexed: 12/12/2022] Open
Abstract
Minimal change disease (MCD), the most common idiopathic nephrotic syndrome in children, is characterized by proteinuria and loss of glomerular visceral epithelial cell (podocyte) ultrastructure. Lipopolysaccharide (LPS) and puromycin aminonucleoside (PAN) are used to study podocyte injury in models of MCD in vivo and in vitro. We hypothesized that LPS and PAN influence components of the innate immune system in podocytes such as the Toll-Like Receptor (TLRs), TLR adapter molecules, and associated cytokines. Our results show that cultured human podocytes constitutively express TLRs 1-6 and TLR-10, but not TLRs 7-9. LPS (25 μg/ml) or PAN (60 μg/ml) caused comparable derangement of the actin cytoskeleton in podocytes. Quantitative RT-PCR analysis show that LPS differentially up-regulated the expression of genes for TLRs (1 > 4 ≥ 2 > 3 > 6 > 5), the adapter molecule, MyD88, and transcription factor NF-κB within one hour. LPS also caused increased levels of IL-6, IL-8 and MCP1 without exerting any effect on TNF-α, IFN-α or TGF-β1 at 24 h. Immunofluorescence intensity analysis of confocal microscopy images showed that LPS induced a significant increase in nuclear translocation of NF-κB by 6 h. In contrast, PAN-induced only small changes in the expression of TLRs 2-6 that included a persistent increase in TLRs 2 and 5, a transient increase in TLR-4, and a gradual increase in TLRs 3 and 6 between 1 and 6 h. Correspondingly, it did not alter pro-inflammatory cytokine levels in podocytes. However, PAN induced a low but significant increase in NF-κB nuclear translocation within one hour that remained unchanged up to 6 h. In summary, these novel findings show that LPS, a known TLR-4 ligand, induced the gene expression of multiple TLRs with maximum effect on the expression of TLR-1 suggesting a loss of receptor selectivity and induction of receptor interactions in podocytes. A comparable derangement of the podocyte cytoskeleton and significant increase in the nuclear translocation of NF-κB by PAN suggest that disparate but complementary mechanisms may contribute to the development of podocytopathy in MCD.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Slater SC, Ramnath RD, Uttridge K, Saleem MA, Cahill PA, Mathieson PW, Welsh GI, Satchell SC. Chronic exposure to laminar shear stress induces Kruppel-like factor 2 in glomerular endothelial cells and modulates interactions with co-cultured podocytes. Int J Biochem Cell Biol 2012; 44:1482-90. [DOI: 10.1016/j.biocel.2012.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/01/2012] [Accepted: 05/25/2012] [Indexed: 12/16/2022]
|
28
|
The complex interplay between cyclooxygenase-2 and angiotensin II in regulating kidney function. Curr Opin Nephrol Hypertens 2012; 21:7-14. [PMID: 22080858 DOI: 10.1097/mnh.0b013e32834d9d75] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Cyclooxygenase-2 (COX-2) plays a critical role in modulating deleterious actions of angiotensin II (Ang II) where there is an inappropriate activation of the renin-angiotensin system (RAS). This review discusses the recent developments regarding the complex interactions by which COX-2 modulates the impact of an activated RAS on kidney function and blood pressure. RECENT FINDINGS Normal rats with increased COX-2 activity but with different intrarenal Ang II activity because of sodium restriction or chronic treatment with angiotensin-converting enzyme (ACE) inhibitors showed similar renal hemodynamic responses to COX-2-selective inhibition (nimesulide) indicating independence from the intrarenal Ang II activity. COX-2-dependent maintenance of medullary blood flow was consistent and not dependent on dietary salt or ACE inhibition. In contrast, COX-2 influences on sodium excretion were contingent on the prevailing RAS activity. In chronic hypertensive models, COX-2 inhibition elicited similar reductions in kidney function, but COX-2 metabolites contribute to rather than ameliorate the hypertension. SUMMARY The maintenance of renal hemodynamics reflects direct and opposing effects of Ang II and COX-2 metabolites. The antagonism in water and electrolyte reabsorption is dependent on the prevailing intrarenal Ang II activity. The recent functional experiments demonstrate a beneficial modulation of Ang II by COX-2 except in the presence of inflammation promoted by hypertension, hyperglycemia, and oxidative stress.
Collapse
|
29
|
Lyon-Roberts B, Strait KA, van Peursem E, Kittikulsuth W, Pollock JS, Pollock DM, Kohan DE. Flow regulation of collecting duct endothelin-1 production. Am J Physiol Renal Physiol 2010; 300:F650-6. [PMID: 21177779 DOI: 10.1152/ajprenal.00530.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Collecting duct (CD) endothelin-1 (ET-1) is an important autocrine inhibitor of CD Na(+) reabsorption. Salt loading is thought to increase CD ET-1 production; however, definitive evidence of this, as well as understanding of the mechanisms transducing this effect, is lacking. Tubule fluid flow increases in response to Na(+) loading; hence, we studied flow modulation of CD ET-1 production. Three days of a high-salt diet increased mouse and rat inner medullary CD (IMCD) ET-1 mRNA expression. Acute furosemide infusion increased urinary ET-1 excretion in anesthetized rats. Primary cultures of mouse or rat IMCD detached in response to flow using a closed perfusion chamber, consequently a CD cell line (mpkCCDcl4) was examined. Flow increased ET-1 mRNA at shear stress rates exceeding 1 dyne/cm(2), with the maximal effect seen between 2 and 10 dyne/cm(2). Induction of ET-1 mRNA was first evident after 1 h, and most apparent after 2 h, of flow. Inhibition of calmodulin or dihydropyridine-sensitive Ca(2+) channels did not alter the flow response; however, chelation of intracellular Ca(2+) or removal of extracellular Ca(2+) largely prevented flow-stimulated ET-1 mRNA accumulation. Downregulation of protein kinase C (PKC) using phorbol 12-myristate 13-acetate, or PKC inhibition with calphostin C, markedly reduced flow-stimulated ET-1 mRNA levels. Flow-stimulated ET-1 mRNA accumulation was abolished by inhibition of phospholipase C (PLC). Taken together, these data indicate that flow increases CD ET-1 production and this is dependent on extracellular and intracellular Ca(2+), PKC, and PLC. These studies suggest a novel pathway for coupling alterations in extracellular fluid volume to CD ET-1 production and ultimately control of CD Na(+) reabsorption.
Collapse
Affiliation(s)
- Brianna Lyon-Roberts
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah; and Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | | | | | |
Collapse
|