1
|
Kubota S, Kawaki H, Perbal B, Kawata K, Hattori T, Nishida T. Cellular communication network factor 3 in cartilage development and maintenance. J Cell Commun Signal 2021; 15:533-543. [PMID: 34125392 PMCID: PMC8642582 DOI: 10.1007/s12079-021-00629-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Cellular communication network factor (CCN) 3 is one of the classical members of the CCN family, which are characterized by common molecular structures and multiple functionalities. Although this protein was discovered as a gene product overexpressed in a truncated form in nephroblastoma, recent studies have revealed its physiological roles in the development and homeostasis of mammalian species, in addition to its pathological association with a number of diseases. Cartilage is a tissue that creates most of the bony parts and cartilaginous tissues that constitute the human skeleton, in which CCN3 is also differentially produced to exert its molecular missions therein. In this review article, after the summary of the molecular structure and function of CCN3, recent findings on the regulation of ccn3 expression and the roles of CCN3 in endochondral ossification, cartilage development, maintenance and disorders are introduced with an emphasis on the metabolic regulation and function of this matricellular multifunctional molecule.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
2
|
CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 2021; 15:545-566. [PMID: 34228239 PMCID: PMC8642527 DOI: 10.1007/s12079-021-00631-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The acronym for the CCN family was recently revised to represent “cellular communication network”. These six, small, cysteine-enriched and evolutionarily conserved proteins are secreted matricellular proteins, that convey and modulate intercellular communication by interacting with structural proteins, signalling factors and cell surface receptors. Their role in the development and physiology of musculoskeletal system, constituted by connective tissues where cells are interspersed in the cellular matrix, has been broadly studied. Previous research has highlighted a crucial balance of CCN proteins in mesenchymal stem cell commitment and a pivotal role for CCN1, CCN2 and their alter ego CCN3 in chondrogenesis and osteogenesis; CCN4 plays a minor role and the role of CCN5 and CCN6 is still unclear. CCN proteins also participate in osteoclastogenesis and myogenesis. In adult life, CCN proteins serve as mechanosensory proteins in the musculoskeletal system providing a steady response to environmental stimuli and participating in fracture healing. Substantial evidence also supports the involvement of CCN proteins in inflammatory pathologies, such as osteoarthritis and rheumatoid arthritis, as well as in cancers affecting the musculoskeletal system and bone metastasis. These matricellular proteins indeed show involvement in inflammation and cancer, thus representing intriguing therapeutic targets. This review discusses the current understanding of CCN proteins in the musculoskeletal system as well as the controversies and challenges associated with their multiple and complex roles, and it aims to link the dispersed knowledge in an effort to stimulate and guide readers to an area that the writers consider to have significant impact and relevant potentialities.
Collapse
|
3
|
Wang H, Huang B, Hou A, Xue L, Wang B, Chen J, Li M, Zhang JV. High NOV/CCN3 expression during high-fat diet pregnancy in mice affects GLUT3 expression and the mTOR pathway. Am J Physiol Endocrinol Metab 2021; 320:E786-E796. [PMID: 33586490 DOI: 10.1152/ajpendo.00230.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the expression levels of nephroblastoma overexpressed [NOV or CCN3 (cellular communication network factor 3)] in the serum and placenta of pregnant women and of pregnant mice fed a high-fat diet (HFD), and its effect on placental glucose transporter 3 (GLUT3) expression, to examine its role in gestational diabetes mellitus (GDM). NOV/CCN3 expression was increased in the mouse serum during pregnancy. At gestational day 18, NOV/CCN3 protein expression was increased in the serum and placenta of the HFD mice compared with that of mice fed a normal diet. Compared with non-GDM patients, the patients with GDM had significantly increased serum NOV/CCN3 protein expression and placental NOV/CCN3 mRNA expression. Therefore, we hypothesized that NOV/CCN3 signaling may be involved in the pathogenesis of GDM. We administered NOV/CCN3 recombinant protein via intraperitoneal injections to pregnant mice fed HFD or normal diet. NOV/CCN3 overexpression led to glucose intolerance. Combined with the HFD, NOV/CCN3 exacerbated glucose intolerance and caused insulin resistance. NOV/CCN3 upregulates GLUT3 expression and affects the mammalian target of rapamycin (mTOR) pathway in the GDM environment in vivo and in vitro. In summary, our results demonstrate, for the first time, the molecular mechanism of NOV/CCN3 signaling in maternal metabolism to regulate glucose balance during pregnancy. NOV/CCN3 may be a potential target for detecting and treating GDM.NEW & NOTEWORTHY NOV/CCN3 regulates glucose homeostasis in mice during pregnancy. NOV/CCN3 upregulates GLUT3 expression and affects the mTOR pathway in the GDM environment in vivo and in vitro.
Collapse
Affiliation(s)
- Hefei Wang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Binbin Huang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Anli Hou
- Department of Gynaecology, University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, People's Republic of China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Li Xue
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Baobei Wang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Jie Chen
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Mengxia Li
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
4
|
Regulation of cellular communication network factor 2 (CCN2) in breast cancer cells via the cell-type dependent interplay between CCN2 and glycolysis. J Oral Biosci 2020; 62:280-288. [DOI: 10.1016/j.job.2020.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
|
5
|
Burkard-Mandel L, O'Neill R, Colligan S, Seshadri M, Abrams SI. Tumor-derived thymic stromal lymphopoietin enhances lung metastasis through an alveolar macrophage-dependent mechanism. Oncoimmunology 2018; 7:e1419115. [PMID: 29721367 PMCID: PMC5927533 DOI: 10.1080/2162402x.2017.1419115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023] Open
Abstract
It is well-recognized that macrophages, which arise from circulating precursors, enhance tumor progression in patients and animal models. However, less is known regarding the role of tissue-resident macrophages in metastasis. Moreover, the identification of tumor factors which influence macrophage function in the metastatic niche remains incomplete. Here, we investigated one such cytokine known as thymic stromal lymphopoietin (TSLP). Our rationale to focus on TSLP was based on two non-overlapping findings; first, TSLP exacerbates asthma in part by altering the lung macrophage response and, secondly, TSLP is produced by certain mouse and human tumor systems, although its role in neoplasia remains understudied. Thus, we tested the hypothesis that tumor-derived TSLP augments lung metastasis by rendering alveolar macrophages pro-tumorigenic. To test this hypothesis, we principally employed the 4T1 tumor model, which produces high levels of TSLP and metastasizes to the lung. TSLP loss-of-function significantly reduced spontaneous lung metastasis, as well as lung colonization. Moreover, similar outcomes were observed in both wild-type and immune-deficient hosts, suggesting that TSLP acted on innate immune cells such as macrophages. To test this notion, pharmacologic depletion of alveolar macrophages significantly reduced lung tumor growth of the TSLP-expressing, but not TSLP-deficient tumor population. In contrast, depleting macrophages originating from the circulation did not impact lung tumor growth. Lastly, TSLP increased the invasive and angiogenic gene expression profile of the alveolar macrophage population. Altogether, our study identified a novel TSLP-alveolar macrophage axis in lung metastasis, which offers new insights into mechanisms of metastasis and potential therapeutic targets.
Collapse
Affiliation(s)
- Lauren Burkard-Mandel
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, USA
| | - Rachel O'Neill
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, USA
| | - Sean Colligan
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, USA
| | - Mukund Seshadri
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, USA
| |
Collapse
|
6
|
Xu ER, Blythe EE, Fischer G, Hyvönen M. Structural analyses of von Willebrand factor C domains of collagen 2A and CCN3 reveal an alternative mode of binding to bone morphogenetic protein-2. J Biol Chem 2017; 292:12516-12527. [PMID: 28584056 DOI: 10.1074/jbc.m117.788992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/18/2017] [Indexed: 01/10/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are secreted growth factors that promote differentiation processes in embryogenesis and tissue development. Regulation of BMP signaling involves binding to a variety of extracellular proteins, among which are many von Willebrand factor C (vWC) domain-containing proteins. Although the crystal structure of the complex of crossveinless-2 (CV-2) vWC1 and BMP-2 previously revealed one mode of the vWC/BMP-binding mechanism, other vWC domains may bind to BMP differently. Here, using X-ray crystallography, we present for the first time structures of the vWC domains of two proteins thought to interact with BMP-2: collagen IIA and matricellular protein CCN3. We found that these two vWC domains share a similar N-terminal fold that differs greatly from that in CV-2 vWC, which comprises its BMP-2-binding site. We analyzed the ability of these vWC domains to directly bind to BMP-2 and detected an interaction only between the collagen IIa vWC and BMP-2. Guided by the collagen IIa vWC domain crystal structure and conservation of surface residues among orthologous domains, we mapped the BMP-binding epitope on the subdomain 1 of the vWC domain. This binding site is different from that previously observed in the complex between CV-2 vWC and BMP-2, revealing an alternative mode of interaction between vWC domains and BMPs.
Collapse
Affiliation(s)
- Emma-Ruoqi Xu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Emily E Blythe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom.
| |
Collapse
|
7
|
Leask A. CCN6: a modulator of breast cancer progression. J Cell Commun Signal 2016; 10:163-4. [PMID: 27086280 DOI: 10.1007/s12079-016-0321-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022] Open
Abstract
The expression of the CCN family of matricellular proteins is highly dysregulated in connective tissue pathologies such as fibrosis and highly metastatic cancers. Strategies targeting members of this family, especially CCN2, are under development as novel therapeutic approaches to highly metastatic cancers such as pancreatic cancer. In prior reports, the Kleer laboratory and colleagues have linked reduced expression of CCN6 (WISP3) with aggressive breast cancers. Loss of CCN6 was associated with elevated Akt phosphorylation and TAK1 activation. In a recent report, the same group reports that, by modulating Notch signaling, CCN6 can promote the maintenance of an epithelial phenotype and also reduce cancer cell migration and invasion, tumor initiation, and metastasis (Oncotarget in press DOI: 10.18632/oncotarget.7734 ). These results are consistent with the hypothesis that addition of CCN6 peptides may represent a novel, viable therapeutic approach to blocking aggressive breast cancers.
Collapse
Affiliation(s)
- Andrew Leask
- Department of Dentistry, University of Western Ontario, Dental Sciences Building, London, ON, N6A 5C1, Canada.
- Department of Physiology and Pharmacology, University of Western Ontario, Dental Sciences Building, London, ON, N6A 5C1, Canada.
| |
Collapse
|
8
|
Sumiyoshi K, Kubota S, Ohgawara T, Kawata K, Abd El Kader T, Nishida T, Ikeda N, Shimo T, Yamashiro T, Takigawa M. Novel role of miR-181a in cartilage metabolism. J Cell Biochem 2013; 114:2094-100. [PMID: 23553719 DOI: 10.1002/jcb.24556] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/18/2013] [Indexed: 01/08/2023]
Abstract
Micro RNA (miRNA) is a small non-coding post-transcriptional RNA regulator that is involved in a variety of biological events. In order to specify the role of miRNAs in cartilage metabolism, we comparatively analyzed the expression profile of known miRNAs in chicken sternum chondrocytes representing early and late differentiation stages. Interestingly, none of the miRNAs displaying strong expression levels showed remarkable changes along with differentiation, suggesting their roles in maintaining the homeostasis rather than cytodifferentiation of chondrocytes. Among these miRNAs, miR-181a, which is known to play critical roles in a number of tissues, was selected and was further characterized. Human microarray analysis revealed remarkably stronger expression of miR-181a in human HCS-2/8 cells, which strongly maintained a chondrocytic phenotype, than in HeLa cells, indicating its significant role in chondrocytes. Indeed, subsequent investigation indicated that miR-181a repressed the expression of two genes involved in cartilage development. One was CCN family member 1 (CCN1), which promotes chondrogenesis; and the other, the gene encoding the core protein of aggrecan, a major cartilaginous proteoglycan, aggrecan. Based on these findings, negative feedback system via miR-181a to conserve the integrity of the cartilaginous phenotype may be proposed.
Collapse
Affiliation(s)
- Kumi Sumiyoshi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Regulation of CCN1 via the 3'-untranslated region. J Cell Commun Signal 2013; 7:207-17. [PMID: 23677691 DOI: 10.1007/s12079-013-0202-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022] Open
Abstract
The 3'-untranslated region (UTR) is known to be a critical regulator of post-transcriptional events that determine the gene expression at the RNA level. The gene CCN1 is one of the classical members of the matricellular CCN family and is involved in a number of biological processes during mammalian development. In the present study, the 600-bp 3'-UTR of CCN1 was functionally characterized. Reporter gene analysis revealed that the entire 3'-UTR profoundly repressed gene expression in cis in different types of the cells, to which both the proximal and distal-halves of the 3'-UTR segments contributed almost equally. Deletion analysis of the 3'-UTR indicated a distinct functional element in the proximal half, whereas a putative target for microRNA-181s was predicted in silico in the distal half. Of note, the repressive RNA element in the proximal half was shown to be capable of forming a stable secondary structure. However, unexpectedly, a reporter construct with a tandem repeat of the predicted miR-181 targets failed to respond to miR-181a. In addition, the other major structured element predicted in the distal half was similarly characterized. To our surprise, the second element rather enhanced the reporter gene expression in cis. These results indicate the involvement of multiple regulatory elements in the CCN1 3'-UTR and suggest the complexity of the miRNA action as well as the 3'-UTR-mediated gene regulation.
Collapse
|
10
|
CCN3/NOV gene expression in human prostate cancer is directly suppressed by the androgen receptor. Oncogene 2013; 33:504-13. [PMID: 23318417 DOI: 10.1038/onc.2012.602] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/28/2012] [Accepted: 11/07/2012] [Indexed: 12/13/2022]
Abstract
Androgen receptor (AR) has essential roles during prostate cancer progression. With genome-wide AR-binding sites mapped to high resolution, studies have recently reported AR as a transcriptional repressor. How AR inhibits gene expression and how this contributes to prostate cancer, however, are incompletely understood. Through meta-analysis of microarray data, here we nominate nephroblastoma overexpressed (NOV) as a top androgen-repressed gene. We show that NOV is directly suppressed by androgen through the AR. AR occupies the NOV enhancer and communicates with the NOV promoter through DNA looping. AR activation recruits the polycomb group protein EZH2, which subsequently catalyzes histone H3 lysine 27 tri-methylation around the NOV promoter, thus leading to repressive chromatin remodeling and epigenetic silencing. Concordantly, AR and EZH2 inhibition synergistically restored NOV expression. NOV is downregulated in human prostate cancer wherein AR and EZH2 are upregulated. Functionally, NOV inhibits prostate cancer cell growth in vitro and in vivo. NOV reconstitution reverses androgen-induced cell growth and NOV knockdown drives androgen-independent cell growth. In addition, NOV expression is restored by hormone-deprivation therapies in mice and prostate cancer patients. Therefore, using NOV as a model gene we gained further understanding of the mechanisms underlying AR-mediated transcriptional repression. Our findings establish a tumor-suppressive role of NOV in prostate cancer and suggest that one important, but previously underestimated, manner by which AR contributes to prostate cancer progression is through inhibition of key tumor-suppressor genes.
Collapse
|
11
|
Ouellet V, Siegel PM. CCN3 modulates bone turnover and is a novel regulator of skeletal metastasis. J Cell Commun Signal 2012; 6:73-85. [PMID: 22427255 PMCID: PMC3368020 DOI: 10.1007/s12079-012-0161-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/15/2012] [Indexed: 12/16/2022] Open
Abstract
The CCN family of proteins is composed of six secreted proteins (CCN1-6), which are grouped together based on their structural similarity. These matricellular proteins are involved in a large spectrum of biological processes, ranging from development to disease. In this review, we focus on CCN3, a founding member of this family, and its role in regulating cells within the bone microenvironment. CCN3 impairs normal osteoblast differentiation through multiple mechanisms, which include the neutralization of pro-osteoblastogenic stimuli such as BMP and Wnt family signals or the activation of pathways that suppress osteoblastogenesis, such as Notch. In contrast, CCN3 is known to promote chondrocyte differentiation. Given these functions, it is not surprising that CCN3 has been implicated in the progression of primary bone cancers such as osteosarcoma, Ewing’s sarcoma and chondrosarcoma. More recently, emerging evidence suggests that CCN3 may also influence the ability of metastatic cancers to colonize and grow in bone.
Collapse
Affiliation(s)
- Véronique Ouellet
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 513, Montreal, Quebec Canada H3A 1A3
| | - Peter M. Siegel
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 513, Montreal, Quebec Canada H3A 1A3
- Departments of Anatomy and Cell Biology, Biochemistry and Medicine, McGill University, Montreal, Quebec Canada
| |
Collapse
|
12
|
Janune D, Kubota S, Lazar N, Perbal B, Iida S, Takigawa M. CCN3-mediated promotion of sulfated proteoglycan synthesis in rat chondrocytes from developing joint heads. J Cell Commun Signal 2011; 5:167-71. [PMID: 21557039 PMCID: PMC3145868 DOI: 10.1007/s12079-011-0135-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 01/02/2023] Open
Abstract
Chondrocytes forming articular cartilage are embedded in a vast amount of extracellular matrix having physical stiffness and elasticity, properties that support the mechanical load from bones and enable the flexible movement of synovial joints. Unlike chondrocytes that conduct the growth of long bones by forming the growth plate, articular chondrocytes show suppressed cell proliferation, unless these cells are exposed to pathological conditions such as mechanical overload. In the present study, we found that one of the members of the CCN family, CCN3, was significantly expressed in chondrocytes isolated from the epiphyseal head in developing rat synovial joints. Evaluation of the effect of recombinant CCN3 on those chondrocytes revealed that CCN3 promoted proteoglycan synthesis, whereas this factor repressed the proliferation of the same cells. These results suggest a critical role for CCN3 in the regulation of the biological properties of articular chondrocytes.
Collapse
Affiliation(s)
- Danilo Janune
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700–8525 Japan
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700–8525 Japan
| | - Noureddine Lazar
- Laboratoire d’Oncologie Virale et Moleculaire, Universite Paris 7 D. Diderot, Paris, France
| | - Bernard Perbal
- Laboratoire d’Oncologie Virale et Moleculaire, Universite Paris 7 D. Diderot, Paris, France
| | - Seiji Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700–8525 Japan
| |
Collapse
|