1
|
Lin Z, Wan X, Zhang T, Huo H, Zhang X, Li K, Bei W, Guo J, Yang Y. Trefoil factor 3: New highlights in chronic kidney disease research. Cell Signal 2022; 100:110470. [PMID: 36122885 DOI: 10.1016/j.cellsig.2022.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
Trefoil factor 3 (TFF3, also known as intestinal trefoil factor) is a small-molecule peptide containing a typical trefoil structure. TFF3 has several biological effects, such as wound healing, immune regulation, neuroprotection, and cell migration and proliferation promotion. Although TFF3 binding sites were identified in rat kidneys more than a decade ago, the specific effects of this small-molecule peptide on kidneys remain unclear. Until recently, much of the research on TFF3 in the kidney field has focused exclusively on its role as a biomarker. Notably, a large prospective randomized study of patients with 29 common clinical diseases revealed that chronic kidney disease (CKD) was associated with the highest serum TFF3 levels, which were 3-fold higher than in acute gastroenteritis, which had the second-highest levels. Examination of each stage of CKD revealed that urine and serum TFF3 levels significantly increased with the progression of CKD. These results suggest that the role of TFF3 in CKD needs further research. The present review summarizes the renal physiological expression, biological functions, and downstream signaling of TFF3, as well as the upstream events that lead to high expression of TFF3 in CKD.
Collapse
Affiliation(s)
- Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaofen Wan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Tao Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaoyu Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Kunping Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Weijian Bei
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| |
Collapse
|
2
|
Xin L, Gao J, Wang D, Lin JH, Liao Z, Ji JT, Du TT, Jiang F, Hu LH, Li ZS. Novel blood-based microRNA biomarker panel for early diagnosis of chronic pancreatitis. Sci Rep 2017; 7:40019. [PMID: 28074846 PMCID: PMC5225423 DOI: 10.1038/srep40019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022] Open
Abstract
Chronic pancreatitis (CP) is an inflammatory disease characterized by progressive fibrosis of pancreas. Early diagnosis will improve the prognosis of patients. This study aimed to obtain serum miRNA biomarkers for early diagnosis of CP. In the current study, we analyzed the differentially expressed miRNAs (DEmiRs) of CP patients from Gene Expression Omnibus (GEO), and the DEmiRs in plasma of early CP patients (n = 10) from clinic by miRNA microarrays. Expression levels of DEmiRs were further tested in clinical samples including early CP patients (n = 20), late CP patients (n = 20) and healthy controls (n = 18). The primary endpoints were area under curve (AUC) and expression levels of DEmiRs. Four DEmiRs (hsa-miR-320a-d) were obtained from GEO CP, meanwhile two (hsa-miR-221 and hsa-miR-130a) were identified as distinct biomarkers of early CP by miRNA microarrays. When applied on clinical serum samples, hsa-miR-320a-d were accurate in predicting late CP, while hsa-miR-221 and hsa-miR-130a were accurate in predicting early CP with AUC of 100.0% and 87.5%. Our study indicates that miRNA expression profile is different in early and late CP. Hsa-miR-221 and hsa-miR-130a are biomarkers of early CP, and the panel of the above 6 serum miRNAs has the potential to be applied clinically for early diagnosis of CP.
Collapse
Affiliation(s)
- Lei Xin
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Jun Gao
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Dan Wang
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Jin-Huan Lin
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Jun-Tao Ji
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Ting-Ting Du
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Fei Jiang
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Liang-Hao Hu
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| |
Collapse
|
3
|
Leask A. Getting out of a sticky situation: targeting the myofibroblast in scleroderma. Open Rheumatol J 2012; 6:163-9. [PMID: 22802915 PMCID: PMC3396281 DOI: 10.2174/1874312901206010163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 02/07/2023] Open
Abstract
There is no treatment for the fibrosis observed in scleroderma (systemic sclerosis, SSc). Although genome-wide expression profiling has suggested that differences in gene expression patters between non-lesional and lesional skin are minimal, phenotypically these areas of tissue are quite different. In fact, lesional areas of scleroderma patients can be distinguished by the presence of a differentiated form of fibroblast, termed the myofibroblast. This cell type expresses the highly contractile protein α-smooth muscle actin (α-SMA). Fibroblasts isolated from SSc lesions excessively synthesize, adhere to and contract extracellular matrix (ECM) and display activated adhesive signaling pathways. Strategies aimed at blocking myofibroblast differentiation, persistence and activity are therefore likely to be useful in alleviating the fibrosis in scleroderma.
Collapse
Affiliation(s)
- Andrew Leask
- Departments of Dentistry and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, London, ON, N6A 5C1, Canada
| |
Collapse
|