1
|
Wiegel D, Dammann CEL, Nielsen HC. ErbB4 alternative splicing mediates fetal mouse alveolar type II cell differentiation in vitro. Pediatr Res 2022:10.1038/s41390-022-02013-y. [PMID: 35338350 PMCID: PMC9509489 DOI: 10.1038/s41390-022-02013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Alternative splicing (AS) creates different protein isoforms, an important mechanism regulating cell-specific function. Little is known about AS in lung development, particularly in alveolar type II (ATII) cells. ErbB4 receptor isoforms Jma and Jmb have significant and opposing functions in the brain, heart, and lung development and/or disease. However, the regulators of ErbB4 AS are unknown. ErbB4 AS regulators in fetal mouse ATII cells control its function in ATII cell maturation. METHODS Candidate ErbB4 AS regulators were found using in silico analysis. Their developmental expression was studied in fetal mouse ATII cells. The effects of splice factor downregulation and upregulation on ATII cell maturation were analyzed. RESULTS ErbB4-Jma increased significantly in ATII cells after gestation E16.5. In silico analysis found four candidate splice factors: FOX2, CUG/CELF1, TIAR, and HUB. Fetal ATII cells expressed these factors in distinct developmental profiles. HUB downregulation in E17.5 ATII cells increased Jma isoform levels and Sftpb gene expression and decreased Jmb. HUB overexpression decreased Jma and Sftpb. CONCLUSIONS ErbB4 AS is developmentally controlled by HUB in fetal ATII cells, promoting ATII differentiation. Regulated AS expression during ATII cell differentiation suggests novel therapeutic strategies to approach human disease. IMPACT Alternative splicing (AS) of the ErbB4 receptor, involving mutually exclusive exon inclusion, creates Jma and Jmb isoforms with distinct differences in receptor processing and function. The Jma isoform of ErbB4 promotes differentiation of fetal lung alveolar type II cells. The AS is mediated in part by the RNA-binding protein HUB. The molecular mechanism of AS for ErbB4 has not been previously described. The regulation of ErbB4 AS has important implications in the development of organs, such as the lung, brain, and heart, and for disease, including cancer.
Collapse
Affiliation(s)
- Dorothea Wiegel
- Hannover Medical School, 30625, Hannover, Germany
- Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, Boston, MA, 02111, USA
| | - Christiane E L Dammann
- Hannover Medical School, 30625, Hannover, Germany
- Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, Boston, MA, 02111, USA
- Graduate School for Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Heber C Nielsen
- Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, Boston, MA, 02111, USA.
- Graduate School for Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
2
|
Ha SG, Dileepan M, Ge XN, Kang BN, Greenberg YG, Rao A, Muralidhar G, Medina-Kauwe L, Thompson MA, Pabelick CM, O'Grady SM, Rao SP, Sriramarao P. Knob protein enhances epithelial barrier integrity and attenuates airway inflammation. J Allergy Clin Immunol 2018; 142:1808-1817.e3. [PMID: 29522849 PMCID: PMC6126992 DOI: 10.1016/j.jaci.2018.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 12/12/2017] [Accepted: 01/29/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Altered epithelial physical and functional barrier properties along with TH1/TH2 immune dysregulation are features of allergic asthma. Regulation of junction proteins to improve barrier function of airway epithelial cells has the potential for alleviation of allergic airway inflammation. OBJECTIVE We sought to determine the immunomodulatory effect of knob protein of the adenoviral capsid on allergic asthma and to investigate its mechanism of action on airway epithelial junction proteins and barrier function. METHODS Airway inflammation, including junction protein expression, was evaluated in allergen-challenged mice with and without treatment with knob. Human bronchial epithelial cells were exposed to knob, and its effects on expression of junction proteins and barrier integrity were determined. RESULTS Administration of knob to allergen-challenged mice suppressed airway inflammation (eosinophilia, airway hyperresponsiveness, and IL-5 levels) and prevented allergen-induced loss of airway epithelial occludin and E-cadherin expression. Additionally, knob decreased expression of TH2-promoting inflammatory mediators, specifically IL-33, by murine lung epithelial cells. At a cellular level, treatment of human bronchial epithelial cells with knob activated c-Jun N-terminal kinase, increased expression of occludin and E-cadherin, and enhanced epithelial barrier integrity. CONCLUSION Increased expression of junction proteins mediated by knob leading to enhanced epithelial barrier function might mitigate the allergen-induced airway inflammatory response, including asthma.
Collapse
Affiliation(s)
- Sung Gil Ha
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Mythili Dileepan
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Xiao Na Ge
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Bit Na Kang
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Yana G Greenberg
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Amrita Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | | | - Lali Medina-Kauwe
- Department of Biomedical Sciences, Cedars-Sinai Medical Center and Geffen School of Medicine, University of California-Los Angeles, Los Angeles, Calif
| | | | - Christina M Pabelick
- Departments of Anesthesiology and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minn
| | - Scott M O'Grady
- Departments of Animal Science and Integrative Biology and Physiology, University of Minnesota, St Paul, Minn
| | - Savita P Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - P Sriramarao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn; Department of Medicine, University of Minnesota, Minneapolis, Minn.
| |
Collapse
|
3
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
4
|
Schwingshackl A, Lopez B, Teng B, Luellen C, Lesage F, Belperio J, Olcese R, Waters CM. Hyperoxia treatment of TREK-1/TREK-2/TRAAK-deficient mice is associated with a reduction in surfactant proteins. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1030-L1046. [PMID: 28839101 DOI: 10.1152/ajplung.00121.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022] Open
Abstract
We previously proposed a role for the two-pore domain potassium (K2P) channel TREK-1 in hyperoxia (HO)-induced lung injury. To determine whether redundancy among the three TREK isoforms (TREK-1, TREK-2, and TRAAK) could protect from HO-induced injury, we now examined the effect of deletion of all three TREK isoforms in a clinically relevant scenario of prolonged HO exposure and mechanical ventilation (MV). We exposed WT and TREK-1/TREK-2/TRAAK-deficient [triple knockout (KO)] mice to either room air, 72-h HO, MV [high and low tidal volume (TV)], or a combination of HO + MV and measured quasistatic lung compliance, bronchoalveolar lavage (BAL) protein concentration, histologic lung injury scores (LIS), cellular apoptosis, and cytokine levels. We determined surfactant gene and protein expression and attempted to prevent HO-induced lung injury by prophylactically administering an exogenous surfactant (Curosurf). HO treatment increased lung injury in triple KO but not WT mice, including an elevated LIS, BAL protein concentration, and markers of apoptosis, decreased lung compliance, and a more proinflammatory cytokine phenotype. MV alone had no effect on lung injury markers. Exposure to HO + MV (low TV) further decreased lung compliance in triple KO but not WT mice, and HO + MV (high TV) was lethal for triple KO mice. In triple KO mice, the HO-induced lung injury was associated with decreased surfactant protein (SP) A and SPC but not SPB and SPD expression. However, these changes could not be explained by alterations in the transcription factors nuclear factor-1 (NF-1), NKX2.1/thyroid transcription factor-1 (TTF-1) or c-jun, or lamellar body levels. Prophylactic Curosurf administration did not improve lung injury scores or compliance in triple KO mice.
Collapse
Affiliation(s)
| | - Benjamin Lopez
- Department of Pediatrics, University of California, Los Angeles, California
| | - Bin Teng
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Charlean Luellen
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Florian Lesage
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Laboratory of Excellence "Ion Channel Science and Therapeutics," Valbonne, France
| | - John Belperio
- Department of Pulmonary and Critical Care, University of California, Los Angeles, California
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, California
| | - Christopher M Waters
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and
| |
Collapse
|
5
|
King G, Smith ME, Cake MH, Nielsen HC. What is the identity of fibroblast-pneumocyte factor? Pediatr Res 2016; 80:768-776. [PMID: 27500537 PMCID: PMC5112109 DOI: 10.1038/pr.2016.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/03/2016] [Indexed: 01/27/2023]
Abstract
Glucocorticoid induction of pulmonary surfactant involves a mesenchyme-derived protein first characterized in 1978 by Smith and termed fibroblast-pneumocyte factor (FPF). Despite a number of agents having been postulated as being FPF, its identity has remained obscure. In the past decade, three strong candidates for FPF have arisen. This review examines the evidence that keratinocyte growth factor (KGF), leptin or neuregulin-1β (NRG-1β) act as FPF or components of it. As with FPF production, glucocorticoids enhance the concentration of each of these agents in fibroblast-conditioned media. Moreover, each stimulates the synthesis of surfactant-associated phospholipids and proteins in type II pneumocytes. Further, some have unique activities, for example, KGF also minimizes lung injury through enhanced epithelial cell proliferation and NRG-1β enhances surfactant phospholipid secretion and β-adrenergic receptor activity in type II cells. However, even though these agents have attributes in common with FPF, it is inappropriate to specify any one of these agents as FPF. Rather, it appears that each contributes to separate mesenchymal-epithelial signaling mechanisms involved in different aspects of lung development. Given that the production of pulmonary surfactant is essential for postnatal survival, it is reasonable to suggest that several mechanisms independently regulate surfactant synthesis.
Collapse
Affiliation(s)
- George King
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia
| | - Megan E. Smith
- Graduate Program in Cell, Molecular and Developmental Biology, Department of Pediatrics, Sackler School of Graduate Biomedical Studies, Tufts University, Boston, MA, USA
| | - Max H. Cake
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia
| | - Heber C. Nielsen
- Graduate Program in Cell, Molecular and Developmental Biology, Department of Pediatrics, Sackler School of Graduate Biomedical Studies, Tufts University, Boston, MA, USA
| |
Collapse
|