1
|
Leask A, Naik A, Stratton RJ. Back to the future: targeting the extracellular matrix to treat systemic sclerosis. Nat Rev Rheumatol 2023; 19:713-723. [PMID: 37789119 DOI: 10.1038/s41584-023-01032-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Fibrosis is the excessive deposition of a stable extracellular matrix (ECM); fibrotic tissue is composed principally of highly crosslinked type I collagen and highly contractile myofibroblasts. Systemic sclerosis (SSc) is a multisystem autoimmune connective tissue disease characterized by skin and organ fibrosis. The fibrotic process has been recognized in SSc for >40 years, but drugs with demonstrable efficacy against SSc fibrosis in ameliorating the lung involvement have only recently been identified. Unfortunately, these treatments are ineffective at improving the skin score in patients with SSc. Previous clinical trials in SSc have largely focused on the cross-purposing of anti-inflammatory drugs and the use of immunosuppressive drugs from the transplantation field, which address inflammatory and/or autoimmune processes. Limited examination has taken place of specific anti-fibrotic agents developed through their ability to directly target the ECM in SSc by, for example, alleviating the persistent matrix stiffness and mechanotransduction that might be required for both the initiation and maintenance of fibrosis, including in SSc. However, because of the importance of the ECM in the SSc phenotype, attempts have now been made to identify drugs that specifically target the ECM, including some drugs that are currently under consideration for the treatment of cancer.
Collapse
Affiliation(s)
- Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Angha Naik
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard J Stratton
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK
| |
Collapse
|
2
|
Lambi AG, DeSante RJ, Patel PR, Hilliard BA, Popoff SN, Barbe MF. Blocking CCN2 Reduces Established Palmar Neuromuscular Fibrosis and Improves Function Following Repetitive Overuse Injury. Int J Mol Sci 2023; 24:13866. [PMID: 37762168 PMCID: PMC10531056 DOI: 10.3390/ijms241813866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The matricellular protein cell communication factor 2/connective tissue growth factor (CCN2/CTGF) is critical to development of neuromuscular fibrosis. Here, we tested whether anti-CCN2 antibody treatment will reduce established forepaw fibro-degenerative changes and improve function in a rat model of overuse injury. Adult female rats performed a high repetition high force (HRHF) task for 18 weeks. Tissues were collected from one subset after 18 wks (HRHF-Untreated). Two subsets were provided 6 wks of rest with concurrent treatment with anti-CCN2 (HRHF-Rest/anti-CCN2) or IgG (HRHF-Rest/IgG). Results were compared to IgG-treated Controls. Forepaw muscle fibrosis, neural fibrosis and entheseal damage were increased in HRHF-Untreated rats, compared to Controls, and changes were ameliorated in HRHF-Rest/anti-CCN2 rats. Anti-CCN2 treatment also reduced phosphorylated-β-catenin (pro-fibrotic protein) in muscles and distal bone/entheses complex, and increased CCN3 (anti-fibrotic) in the same tissues, compared to HRHF-Untreated rats. Grip strength declines and mechanical sensitivity observed in HRHF-Untreated improved with rest; grip strength improved further in HRHF-Rest/anti-CCN2. Grip strength declines correlated with muscle fibrosis, entheseal damage, extraneural fibrosis, and decreased nerve conduction velocity, while enhanced mechanical sensitivity (a pain-related behavior) correlated with extraneural fibrosis. These studies demonstrate that blocking CCN2 signaling reduces established forepaw neuromuscular fibrosis and entheseal damage, which improves forepaw function, following overuse injury.
Collapse
Affiliation(s)
- Alex G. Lambi
- Department of Surgery, Plastic Surgery Section, New Mexico Veterans Administration Health Care System, Albuquerque, NM 87108, USA;
- Division of Plastic Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Robert J. DeSante
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (R.J.D.); (P.R.P.); (B.A.H.)
| | - Parth R. Patel
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (R.J.D.); (P.R.P.); (B.A.H.)
| | - Brendan A. Hilliard
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (R.J.D.); (P.R.P.); (B.A.H.)
| | - Steven N. Popoff
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| | - Mary F. Barbe
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (R.J.D.); (P.R.P.); (B.A.H.)
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
3
|
Yin H, Liu N, Zhou X, Chen J, Duan L. The advance of CCN3 in fibrosis. J Cell Commun Signal 2023:10.1007/s12079-023-00778-3. [PMID: 37378812 DOI: 10.1007/s12079-023-00778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The extracellular matrix (ECM) is comprised of various extracellular macromolecules, including collagen, enzymes, and glycoproteins, which offer structural and biochemical support to neighboring cells. After tissue injury, extracellular matrix proteins deposit in the damaged tissue to promote tissue healing. However, an imbalance between ECM production and degradation can result in excessive deposition, leading to fibrosis and subsequent organ dysfunction. Acting as a regulatory protein within the extracellular matrix, CCN3 plays a crucial role in numerous biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Many studies have demonstrated that CCN3 can reduce the production of ECM in tissues through diverse mechanisms thereby exerting an inhibitory effect on fibrosis. Consequently, CCN3 emerges as a promising therapeutic target for ameliorating fibrosis.
Collapse
Affiliation(s)
- Hui Yin
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- JXHC Key Laboratory of Rheumatology and Immunology, Nanchang, China
| | - Na Liu
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xianming Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Chen
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China.
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
- JXHC Key Laboratory of Rheumatology and Immunology, Nanchang, China.
| |
Collapse
|
4
|
Borkham-Kamphorst E, Meurer SK, Weiskirchen R. Expression and biological function of the cellular communication network factor 5 (CCN5) in primary liver cells. J Cell Commun Signal 2023:10.1007/s12079-023-00757-8. [PMID: 37166689 DOI: 10.1007/s12079-023-00757-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Abstract
The cellular (centralized) communication network (CCN) factor protein family contains six small secreted cysteine-rich proteins sharing high structural similarity. These matricellular proteins have vital biological functions in cell adhesion, migration, cell cycle progression, and control of production and degradation of extracellular matrix. However, in liver the biological functions of CCN proteins become most visible during hepatic injury, disease, and remodeling. In particular, most of the hepatic functions of CCN proteins were derived from CCN2/CTGF, which becomes highly expressed in damaged hepatocytes and acts as a profibrogenic molecule. On the contrary, CCN1/CYR61 seems to have opposite effects, while the biological activity during hepatic fibrosis is somewhat controversially discussed for other CCN family members. In the present study, we analyzed the expression of CCN5/WISP2 in cultures of different types of primary liver cells and in an experimental model of hepatic fibrosis. We found that CCN5 is expressed in hepatic stellate cells, myofibroblasts and portal myofibroblasts, while CCN5 expression is virtually absent in hepatocytes. During hepatic fibrogenesis, CCN5 is significantly upregulated. Overexpression of CCN5 in portal myofibroblasts reduced expression of transforming growth factor-β receptor I (ALK5) and concomitant Smad2 activation, whereas JunB expression is upregulated. Moreover, elevated expression of CCN5 induces endoplasmic reticulum stress, unfolded protein response and apoptosis in portal myofibroblasts. We suggest that upregulated expression of CCN5 might be an intrinsic control mechanism that counteracts overshooting fibrotic responses in profibrogenic liver cells.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Betageri KR, Link PA, Haak AJ, Ligresti G, Tschumperlin DJ, Caporarello N. The matricellular protein CCN3 supports lung endothelial homeostasis and function. Am J Physiol Lung Cell Mol Physiol 2023; 324:L154-L168. [PMID: 36573684 PMCID: PMC9925165 DOI: 10.1152/ajplung.00248.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Aberrant vascular remodeling contributes to the progression of many aging-associated diseases, including idiopathic pulmonary fibrosis (IPF), where heterogeneous capillary density, endothelial transcriptional alterations, and increased vascular permeability correlate with poor disease outcomes. Thus, identifying disease-driving mechanisms in the pulmonary vasculature may be a promising strategy to limit IPF progression. Here, we identified Ccn3 as an endothelial-derived factor that is upregulated in resolving but not in persistent lung fibrosis in mice, and whose function is critical for vascular homeostasis and repair. Loss and gain of function experiments were carried out to test the role of CCN3 in lung microvascular endothelial function in vitro through RNAi and the addition of recombinant human CCN3 protein, respectively. Endothelial migration, permeability, proliferation, and in vitro angiogenesis were tested in cultured human lung microvascular endothelial cells (ECs). Loss of CCN3 in lung ECs resulted in transcriptional alterations along with impaired wound-healing responses, in vitro angiogenesis, barrier integrity as well as an increased profibrotic activity through paracrine signals, whereas the addition of recombinant CCN3 augmented endothelial function. Altogether, our results demonstrate that the matricellular protein CCN3 plays an important role in lung endothelial function and could serve as a promising therapeutic target to facilitate vascular repair and promote lung fibrosis resolution.
Collapse
Affiliation(s)
- Kalpana R Betageri
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Patrick A Link
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Nunzia Caporarello
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Peidl A, Nguyen J, Chitturi P, Riser BL, Leask A. Using the Bleomycin-Induced Model of Fibrosis to Study the Contribution of CCN Proteins to Scleroderma Fibrosis. Methods Mol Biol 2023; 2582:309-321. [PMID: 36370359 DOI: 10.1007/978-1-0716-2744-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Approximately 45% of the deaths in the developed world result from conditions with a fibrotic component. Although no specific, focused anti-fibrotic therapies have been approved for clinical use, a long-standing concept is that targeting CCN proteins may be useful to treat fibrosis. Herein, we summarize current data supporting the concept that targeting CCN2 may be a viable anti-fibrotic approach to treat scleroderma. Testing this hypothesis has been made possible by using a mouse model of inflammation-driven skin and lung fibrosis.
Collapse
Affiliation(s)
- Alexander Peidl
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - John Nguyen
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Bruce L Riser
- BLR Bio LLC, Kenosha, WI, USA
- Center for Cancer Cell Biology, Immunology and Infection, Department of Physiology and Biophysics, and Department of Medicine Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
7
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
8
|
Blokland KEC, Nizamoglu M, Habibie H, Borghuis T, Schuliga M, Melgert BN, Knight DA, Brandsma CA, Pouwels SD, Burgess JK. Substrate stiffness engineered to replicate disease conditions influence senescence and fibrotic responses in primary lung fibroblasts. Front Pharmacol 2022; 13:989169. [PMID: 36408252 PMCID: PMC9673045 DOI: 10.3389/fphar.2022.989169] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
In fibrosis remodelling of ECM leads to changes in composition and stiffness. Such changes can have a major impact on cell functions including proliferation, secretory profile and differentiation. Several studies have reported that fibrosis is characterised by increased senescence and accumulating evidence suggests that changes to the ECM including altered composition and increased stiffness may contribute to premature cellular senescence. This study investigated if increased stiffness could modulate markers of senescence and/or fibrosis in primary human lung fibroblasts. Using hydrogels representing stiffnesses that fall within healthy and fibrotic ranges, we cultured primary fibroblasts from non-diseased lung tissue on top of these hydrogels for up to 7 days before assessing senescence and fibrosis markers. Fibroblasts cultured on stiffer (±15 kPa) hydrogels showed higher Yes-associated protein-1 (YAP) nuclear translocation compared to soft hydrogels. When looking at senescence-associated proteins we also found higher secretion of receptor activator of nuclear factor kappa-B ligand (RANKL) but no change in transforming growth factor-β1 (TGF-β1) or connective tissue growth factor (CTGF) expression and higher decorin protein deposition on stiffer matrices. With respect to genes associated with fibrosis, fibroblasts on stiffer hydrogels compared to soft had higher expression of smooth muscle alpha (α)-2 actin (ACTA2), collagen (COL) 1A1 and fibulin-1 (Fbln1) and higher Fbln1 protein deposition after 7 days. Our results show that exposure of lung fibroblasts to fibrotic stiffness activates genes and secreted factors that are part of fibrotic responses and part of the Senescence-associated secretory phenotype (SASP). This overlap may contribute to the creation of a feedback loop whereby fibroblasts create a perpetuating cycle reinforcing progression of a fibrotic response.
Collapse
Affiliation(s)
- Kaj E. C. Blokland
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
| | - Habibie Habibie
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen, Netherlands
- Hasanuddin University, Faculty of Pharmacy, Makassar, Indonesia
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
| | - Michael Schuliga
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
| | - Barbro N. Melgert
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen, Netherlands
| | - Darryl A. Knight
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
- Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
| | - Simon D. Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- *Correspondence: Janette K. Burgess,
| |
Collapse
|
9
|
Liu S, Xing L, Zhang J, Wang K, Duan M, Wei M, Zhang B, Chang Z, Zhang H, Shang P. Expression pattern of CRYAB and CTGF genes in two pig breeds at different altitudes. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Tibetan pigs are characterized by significant phenotypic differences relative to lowland pigs. Our previous study demonstrated that the genes CRYAB and CTGF were differentially expressed in heart tissues between Tibetan (highland breed) and Yorkshire (lowland breed) pigs, indicating that they might participate in hypoxia adaptation. CRYAB (ɑB-crystallin) and CTGF (connective tissue growth factor) have also been reported to be associated with lung development. However, the expression patterns of CRYAB and CTGF in lung tissues at different altitudes and their genetic characterization are not well understood. In this study, qRT-PCR and western blot of lung tissue revealed higher CRYAB expression levels in highland and middle-highland Tibetan and Yorkshire pigs than in their lowland counterparts. With an increase in altitude, the expression level of CTGF increased in Tibetan pigs, whereas it decreased in Yorkshire pigs. Furthermore, two novel single-nucleotide polymorphism were identified in the 5′ flanking region of CRYAB (g.39644482C>T and g.39644132T>C) and CTGF (g.31671748A>G and g.31671773T>G). The polymorphism may partially contribute to the differences in expression levels between groups at the same altitude. These findings provide novel insights into the high-altitude hypoxia adaptations of Tibetan pigs.
Collapse
Affiliation(s)
- S. Liu
- Tibet Agriculture and Animal Husbandry College, People’s Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People’s Republic of China
| | - L. Xing
- Tibet Agriculture and Animal Husbandry College, People’s Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People’s Republic of China
| | - J. Zhang
- Tibet Agriculture and Animal Husbandry College, People’s Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People’s Republic of China
| | - K. Wang
- Henan Agricultural University, People’s Republic of China
| | - M. Duan
- Tibet Agriculture and Animal Husbandry College, People’s Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People’s Republic of China
| | - M. Wei
- Tibet Agriculture and Animal Husbandry College, People’s Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People’s Republic of China
| | - B. Zhang
- China Agricultural University, People’s Republic of China
| | - Z. Chang
- Tibet Agriculture and Animal Husbandry College, People’s Republic of China
| | - H. Zhang
- China Agricultural University, People’s Republic of China
| | - P. Shang
- Tibet Agriculture and Animal Husbandry College, People’s Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People’s Republic of China
| |
Collapse
|
10
|
Mizukawa T, Nishida T, Akashi S, Kawata K, Kikuchi S, Kawaki H, Takigawa M, Kamioka H, Kubota S. RFX1-mediated CCN3 induction that may support chondrocyte survival under starved conditions. J Cell Physiol 2021; 236:6884-6896. [PMID: 33655492 DOI: 10.1002/jcp.30348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Cellular communication network factor (CCN) family members are multifunctional matricellular proteins that manipulate and integrate extracellular signals. In our previous studies investigating the role of CCN family members in cellular metabolism, we found three members that might be under the regulation of energy metabolism. In this study, we confirmed that CCN2 and CCN3 are the only members that are tightly regulated by glycolysis in human chondrocytic cells. Interestingly, CCN3 was induced under a variety of impaired glycolytic conditions. This CCN3 induction was also observed in two breast cancer cell lines with a distinct phenotype, suggesting a basic role of CCN3 in cellular metabolism. Reporter gene assays indicated a transcriptional regulation mediated by an enhancer in the proximal promoter region. As a result of analyses in silico, we specified regulatory factor binding to the X-box 1 (RFX1) as a candidate that mediated the transcriptional activation by impaired glycolysis. Indeed, the inhibition of glycolysis induced the expression of RFX1, and RFX1 silencing nullified the CCN3 induction by impaired glycolysis. Subsequent experiments with an anti-CCN3 antibody indicated that CCN3 supported the survival of chondrocytes under impaired glycolysis. Consistent with these findings in vitro, abundant CCN3 production by chondrocytes in the deep zones of developing epiphysial cartilage, which are located far away from the synovial fluid, was confirmed in vivo. Our present study uncovered that RFX1 is the mediator that enables CCN3 induction upon cellular starvation, which may eventually assist chondrocytes in retaining their viability, even when there is an energy supply shortage.
Collapse
Affiliation(s)
- Tomomi Mizukawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Sho Akashi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sumire Kikuchi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Harumi Kawaki
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
11
|
The Emerging Roles of CCN3 Protein in Immune-Related Diseases. Mediators Inflamm 2021; 2021:5576059. [PMID: 34393649 PMCID: PMC8356028 DOI: 10.1155/2021/5576059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/24/2021] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
The CCN proteins are a family of extracellular matrix- (ECM-) associated proteins which currently consist of six secreted proteins (CCN1-6). CCN3 protein, also known as nephroblastoma overexpressed protein (NOV), is a member of the CCN family with multiple biological functions, implicated in major cellular processes such as cell growth, migration, and differentiation. Recently, CCN3 has emerged as a critical regulator in a variety of diseases, including immune-related diseases, including rheumatology arthritis, osteoarthritis, and systemic sclerosis. In this review, we will briefly introduce the structure and function of the CCN3 protein and summarize the roles of CCN3 in immune-related diseases, which is essential to understand the functions of the CCN3 in immune-related diseases.
Collapse
|
12
|
Blokland K, Pouwels S, Schuliga M, Knight D, Burgess J. Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases. Clin Sci (Lond) 2020; 134:2681-2706. [PMID: 33084883 PMCID: PMC7578566 DOI: 10.1042/cs20190893] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is a complex network of macromolecules surrounding cells providing structural support and stability to tissues. The understanding of the ECM and the diverse roles it plays in development, homoeostasis and injury have greatly advanced in the last three decades. The ECM is crucial for maintaining tissue homoeostasis but also many pathological conditions arise from aberrant matrix remodelling during ageing. Ageing is characterised as functional decline of tissue over time ultimately leading to tissue dysfunction, and is a risk factor in many diseases including cardiovascular disease, diabetes, cancer, dementia, glaucoma, chronic obstructive pulmonary disease (COPD) and fibrosis. ECM changes are recognised as a major driver of aberrant cell responses. Mesenchymal cells in aged tissue show signs of growth arrest and resistance to apoptosis, which are indicative of cellular senescence. It was recently postulated that cellular senescence contributes to the pathogenesis of chronic fibrotic diseases in the heart, kidney, liver and lung. Senescent cells negatively impact tissue regeneration while creating a pro-inflammatory environment as part of the senescence-associated secretory phenotype (SASP) favouring disease progression. In this review, we explore and summarise the current knowledge around how aberrant ECM potentially influences the senescent phenotype in chronic fibrotic diseases. Lastly, we will explore the possibility for interventions in the ECM-senescence regulatory pathways for therapeutic potential in chronic fibrotic diseases.
Collapse
Affiliation(s)
- Kaj E.C. Blokland
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
| | - Simon D. Pouwels
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- Department of Lung Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Michael Schuliga
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
| | - Darryl A. Knight
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Janette K. Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| |
Collapse
|
13
|
Feng D, Gerarduzzi C. Emerging Roles of Matricellular Proteins in Systemic Sclerosis. Int J Mol Sci 2020; 21:E4776. [PMID: 32640520 PMCID: PMC7369781 DOI: 10.3390/ijms21134776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis is a rare chronic heterogenous disease that involves inflammation and vasculopathy, and converges in end-stage development of multisystem tissue fibrosis. The loss of tight spatial distribution and temporal expression of proteins in the extracellular matrix (ECM) leads to progressive organ stiffening, which is a hallmark of fibrotic disease. A group of nonstructural matrix proteins, known as matricellular proteins (MCPs) are implicated in dysregulated processes that drive fibrosis such as ECM remodeling and various cellular behaviors. Accordingly, MCPs have been described in the context of fibrosis in sclerosis (SSc) as predictive disease biomarkers and regulators of ECM synthesis, with promising therapeutic potential. In this present review, an informative summary of major MCPs is presented highlighting their clear correlations to SSc- fibrosis.
Collapse
Affiliation(s)
- Daniel Feng
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Casimiro Gerarduzzi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
14
|
Reprogramming of Mesothelial-Mesenchymal Transition in Chronic Peritoneal Diseases by Estrogen Receptor Modulation and TGF-β1 Inhibition. Int J Mol Sci 2020; 21:ijms21114158. [PMID: 32532126 PMCID: PMC7312018 DOI: 10.3390/ijms21114158] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
In chronic peritoneal diseases, mesothelial-mesenchymal transition is determined by cues from the extracellular environment rather than just the cellular genome. The transformation of peritoneal mesothelial cells and other host cells into myofibroblasts is mediated by cell membrane receptors, Transforming Growth Factor β1 (TGF-β1), Src and Hypoxia-inducible factor (HIF). This article provides a narrative review of the reprogramming of mesothelial mesenchymal transition in chronic peritoneal diseases, drawing on the similarities in pathophysiology between encapsulating peritoneal sclerosis and peritoneal metastasis, with a particular focus on TGF-β1 signaling and estrogen receptor modulators. Estrogen receptors act at the cell membrane/cytosol as tyrosine kinases that can phosphorylate Src, in a similar way to other receptor tyrosine kinases; or can activate the estrogen response element via nuclear translocation. Tamoxifen can modulate estrogen membrane receptors, and has been shown to be a potent inhibitor of mesothelial-mesenchymal transition (MMT), peritoneal mesothelial cell migration, stromal fibrosis, and neoangiogenesis in the treatment of encapsulating peritoneal sclerosis, with a known side effect and safety profile. The ability of tamoxifen to inhibit the transduction pathways of TGF-β1 and HIF and achieve a quiescent peritoneal stroma makes it a potential candidate for use in cancer treatments. This is relevant to tumors that spread to the peritoneum, particularly those with mesenchymal phenotypes, such as colorectal CMS4 and MSS/EMT gastric cancers, and pancreatic cancer with its desmoplastic stroma. Morphological changes observed during mesothelial mesenchymal transition can be treated with estrogen receptor modulation and TGF-β1 inhibition, which may enable the regression of encapsulating peritoneal sclerosis and peritoneal metastasis.
Collapse
|
15
|
Leask A. Conjunction junction, what's the function? CCN proteins as targets in fibrosis and cancers. Am J Physiol Cell Physiol 2020; 318:C1046-C1054. [PMID: 32130070 PMCID: PMC7311738 DOI: 10.1152/ajpcell.00028.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Cellular communication network (CCN) proteins are matricellular proteins that coordinate signaling among extracellular matrix, secreted proteins, and cell surface receptors. Their specific in vivo function is context-dependent, but they play profound roles in pathological conditions, such as fibrosis and cancers. Anti-CCN therapies are in clinical consideration. Only recently, however, has the function of these complex molecules begun to emerge. This review summarizes and interprets our current knowledge regarding these fascinating molecules and provides experimental evidence for their utility as therapeutic targets.
Collapse
Affiliation(s)
- Andrew Leask
- School of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
16
|
Slow train coming: an anti-CCN2 strategy reverses a model of chronic overuse muscle fibrosis. J Cell Commun Signal 2020; 14:349-350. [PMID: 32410169 PMCID: PMC7511481 DOI: 10.1007/s12079-020-00568-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
One of the first targets proposed as an anti-fibrotic therapy was CCN2. Proof of its involvement in fibrosis was initially difficult, due to the lack of appropriate reagents and general understanding of the molecular mechanisms responsible for persistent fibrosis. As these issues have been progressively resolved over the last twenty-five years, it has become clear that CCN2 is a bone fide target for anti-fibrotic intervention. An anti-CCN2 antibody (FG-3019) is in Phase III clinical trials for idiopathic pulmonary fibrosis and pancreatic cancer, and in Phase II for Duschenne’s muscular dystrophy. An exciting paper recently published by Mary Barbe and the Popoff group has shown that FG-3019 reduces established muscle fibrosis (Barbe et al., FASEB J 34:6554–6569, 2020). Intriguingly, FG-3019 blocked the decreased expression of the anti-fibrotic protein CCN3, caused by the injury model. These important data support the notion that targeting CCN2 in the fibrotic microenvironment may reverse established fibrosis, making it the first agent currently in development to do so.
Collapse
|
17
|
Leask A. A centralized communication network: Recent insights into the role of the cancer associated fibroblast in the development of drug resistance in tumors. Semin Cell Dev Biol 2020; 101:111-114. [DOI: 10.1016/j.semcdb.2019.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
|
18
|
CCN-Based Therapeutic Peptides Modify Pancreatic Ductal Adenocarcinoma Microenvironment and Decrease Tumor Growth in Combination with Chemotherapy. Cells 2020; 9:cells9040952. [PMID: 32294968 PMCID: PMC7226963 DOI: 10.3390/cells9040952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
The prominent desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) is a determinant factor in tumor progression and a major barrier to the access of chemotherapy. The PDAC microenvironment therefore appears to be a promising therapeutic target. CCN2/CTGF is a profibrotic matricellular protein, highly present in the PDAC microenvironment and associated with disease progression. Here we have investigated the therapeutic value of the CCN2-targeting BLR100 and BLR200, two modified synthetic peptides derived from active regions of CCN3, an endogenous inhibitor of CCN2. In a murine orthotopic PDAC model, the two peptides, administered as monotherapy at low doses (approximating physiological levels of CCN3), had tumor inhibitory activity that increased with the dose. The peptides affected the tumor microenvironment, inhibiting fibrosis and vessel formation and reducing necrosis. Both peptides were active in preventing ascites formation. An increased activity was obtained in combination regimens, administering BLR100 or BLR200 with the chemotherapeutic drug gemcitabine. Pharmacokinetic analysis indicated that the improved activity of the combination was not mainly determined by the substantial increase in gemcitabine delivery to tumors, suggesting other effects on the tumor microenvironment. The beneficial remodeling of the tumor stroma supports the potential value of these CCN3-derived peptides for targeting pathways regulated by CCN2 in PDAC.
Collapse
|
19
|
Barbe MF, Hilliard BA, Amin M, Harris MY, Hobson LJ, Cruz GE, Popoff SN. Blocking CTGF/CCN2 reduces established skeletal muscle fibrosis in a rat model of overuse injury. FASEB J 2020; 34:6554-6569. [PMID: 32227398 PMCID: PMC7200299 DOI: 10.1096/fj.202000240rr] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
Tissue fibrosis is a hallmark of overuse musculoskeletal injuries and contributes to functional declines. We tested whether inhibition of CCN2 (cellular communication network factor 2, previously known as connective tissue growth factor, CTGF) using a specific antibody (termed FG‐3019 or pamrevlumab) reduces established overuse‐induced muscle fibrosis in a clinically relevant rodent model of upper extremity overuse injury. Young adult rats performed a high repetition high force (HRHF) reaching and lever‐pulling task for 18 weeks, after first being shaped for 6 weeks to learn this operant task. Rats were then euthanized (HRHF‐Untreated), or rested and treated for 6 weeks with FG‐3019 (HRHF‐Rest/FG‐3019) or a human IgG as a vehicle control (HRHF‐Rest/IgG). HRHF‐Untreated and HRHF‐Rest/IgG rats had higher muscle levels of several fibrosis‐related proteins (TGFβ1, CCN2, collagen types I and III, and FGF2), and higher muscle numbers of alpha SMA and pERK immunopositive cells, compared to control rats. Each of these fibrogenic changes was restored to control levels by the blocking of CCN2 signaling in HRHF‐Rest/FG‐3019 rats, as were HRHF task‐induced increases in serum CCN2 and pro‐collagen I intact N‐terminal protein. Levels of cleaved CCN3, an antifibrotic protein, were lowered in HRHF‐Untreated and HRHF‐Rest/IgG rats, compared to control rats, yet elevated back to control levels in HRHF‐Rest/FG‐3019 rats. Significant grip strength declines observed in HRHF‐Untreated and HRHF‐Rest/IgG rats, were restored to control levels in HRHF‐Rest/FG‐3019 rats. These results are highly encouraging for use of FG‐3019 for therapeutic treatment of persistent skeletal muscle fibrosis, such as those induced with chronic overuse.
Collapse
Affiliation(s)
- Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Brendan A Hilliard
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mamta Amin
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Michele Y Harris
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Lucas J Hobson
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Geneva E Cruz
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Steven N Popoff
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
20
|
Xu ER, Lafita A, Bateman A, Hyvönen M. The thrombospondin module 1 domain of the matricellular protein CCN3 shows an atypical disulfide pattern and incomplete CWR layers. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:124-134. [PMID: 32038043 DOI: 10.1107/s2059798319016747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/14/2019] [Indexed: 05/04/2023]
Abstract
The members of the CCN (Cyr61/CTGF/Nov) family are a group of matricellular regulatory proteins that are essential to a wide range of functional pathways in cell signalling. Through interacting with extracellular matrix components and growth factors via one of their four domains, the CCN proteins are involved in critical biological processes such as angiogenesis, cell proliferation, bone development, fibrogenesis and tumorigenesis. Here, the crystal structure of the thrombospondin module 1 (TSP1) domain of CCN3 (previously known as Nov) is presented, which shares a similar three-stranded fold with the thrombospondin type 1 repeats of thrombospondin-1 and spondin-1, but with variations in the disulfide connectivity. Moreover, the CCN3 TSP1 domain lacks the typical π-stacked ladder of charged and aromatic residues on one side of the domain that is seen in other TSP1 domains. Using conservation analysis among orthologous domains, it is shown that a charged cluster in the centre of the domain is the most conserved site and this cluster is predicted to be a potential functional epitope for heparan sulfate binding. This variant TSP1 domain has also been used to revise the sequence determinants of TSP1 domains and to derive improved Pfam sequence profiles for the identification of novel TSP1 domains in more than 10 000 proteins across diverse phyla.
Collapse
Affiliation(s)
- Emma Ruoqi Xu
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, England
| | - Aleix Lafita
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, England
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, England
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, England
| |
Collapse
|
21
|
Tsang M, Quesnel K, Vincent K, Hutchenreuther J, Postovit LM, Leask A. Insights into Fibroblast Plasticity: Cellular Communication Network 2 Is Required for Activation of Cancer-Associated Fibroblasts in a Murine Model of Melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:206-221. [PMID: 31610176 DOI: 10.1016/j.ajpath.2019.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
Tumor stroma resembles a fibrotic microenvironment, being characterized by the presence of myofibroblast-like cancer-associated fibroblasts (CAFs). In wild-type mice injected with melanoma cells, we show that the stem cell transcription factor Sox2 is expressed by tumor cells and induced in CAFs derived from synthetic fibroblasts. These fibroblasts were labeled postnatally with green fluorescent protein using mice expressing a tamoxifen-dependent Cre recombinase under the control of a fibroblast-specific promoter/enhancer. Conversely, fibroblast activation was impaired in mice with a fibroblast-specific deletion of cellular communication network 2 (Ccn2), associated with reduced expression of α-smooth muscle actin and Sox2. Multipotent Sox2-expressing skin-derived precursor (SKP) spheroids were cultured from murine back skin. Using lineage tracing and flow cytometry, approximately 40% of SKPs were found to be derived from type I collagen-lineage cells and acquired multipotency in culture. Inhibition of mechanotransduction pathways prevented myofibroblast differentiation of SKPs and expression of Ccn2. In SKPs deleted for Ccn2, differentiation into a myofibroblast, but not an adipocyte or neuronal phenotype, was also impaired. In human melanoma, CCN2 expression was associated with a profibrotic integrin alpha (ITGA) 11-expressing subset of CAFs that negatively associated with survival. These results suggest that synthetic dermal fibroblasts are plastic, and that CCN2 is required for the differentiation of dermal progenitor cells into a myofibroblast/CAF phenotype and is, therefore, a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Matthew Tsang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Katherine Quesnel
- Department of Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Krista Vincent
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - James Hutchenreuther
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | - Andrew Leask
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Department of Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
22
|
Smina TP, Rabeka M, Viswanathan V. Diabetic Foot Ulcer as a Cause of Significant Decline in the Renal Function Among South Indian Population With Type 2 Diabetes: Role of TGF-β1 and CCN Family Proteins. INT J LOW EXTR WOUND 2019; 18:354-361. [PMID: 31304816 DOI: 10.1177/1534734619862704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the present study, a total of 428 South Indian subjects were divided into four different groups, consisting of individuals with type 2 diabetes without any other complications (T2DM), T2DM subjects with stage 2 and 3 diabetic kidney disease (CKD), T2DM subjects with grade 2 or 3 diabetic foot ulcer (DFU) and T2DM subjects having both diabetic kidney disease and diabetic foot ulcer (CKDDFU). The study was conducted ambispectively by comparing the changes in renal function among two consecutive periods, i.e., the period prior to the development of grade 2 and 3 diabetic foot ulcer (retrospectively) and after the development of DFU (prospectively). A gradual and uniform reduction of eGFR was observed throughout the study period in the subjects affected with either CKD or DFU alone. Whereas in subjects with both CKD and DFU, there was a sharp decline in the eGFR during the six months prior to the baseline, i.e., the period in which the development of ulcer and its progression to grade 2 or 3 happened. Remarkable elevations in the levels of TGF-β1 and CCN2 (CTGF), as well as a significant reduction in the level of CCN3 (NOV), were observed in the serum of CKDDFU group subjects, compared to the other groups. Increased production of TGF-β1 in response to the inflammatory stimulus from multiple sites in CKDDFU subjects caused a subsequent down-regulation of CCN3, followed by the activation of a large quantity of CCN2.
Collapse
Affiliation(s)
- T P Smina
- M.V. Hospital for Diabetes and Prof. M. Viswanathan Diabetes Research Centre, Chennai, India
| | - M Rabeka
- M.V. Hospital for Diabetes and Prof. M. Viswanathan Diabetes Research Centre, Chennai, India
| | - Vijay Viswanathan
- M.V. Hospital for Diabetes and Prof. M. Viswanathan Diabetes Research Centre, Chennai, India
| |
Collapse
|
23
|
Quesnel K, Shi-Wen X, Hutchenreuther J, Xiao Y, Liu S, Peidl A, Naskar D, Siqueira WL, O'Gorman DB, Hinz B, Stratton RJ, Leask A. CCN1 expression by fibroblasts is required for bleomycin-induced skin fibrosis. Matrix Biol Plus 2019; 3:100009. [PMID: 33543008 PMCID: PMC7852207 DOI: 10.1016/j.mbplus.2019.100009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/04/2019] [Accepted: 06/29/2019] [Indexed: 01/16/2023] Open
Abstract
The microenvironment contributes to the excessive connective tissue deposition that characterizes fibrosis. Members of the CCN family of matricellular proteins are secreted by fibroblasts into the fibrotic microenvironment; however, the role of endogenous CCN1 in skin fibrosis is unknown. Mice harboring a fibroblast-specific deletion for CCN1 were used to assess if CCN1 contributes to dermal homeostasis, wound healing, and skin fibrosis. Mice with a fibroblast-specific CCN1 deletion showed progressive skin thinning and reduced accumulation of type I collagen; however, the overall mechanical property of skin (Young's modulus) was not significantly reduced. Real time-polymerase chain reaction analysis revealed that CCN1-deficient skin displayed reduced expression of mRNAs encoding enzymes that promote collagen stability (including prolyl-4-hydroxylase and PLOD2), although expression of COL1A1 mRNA was unaltered. CCN1-deficent skin showed reduced hydroxyproline levels. Electron microscopy revealed that collagen fibers were disorganized in CCN1-deficient skin. CCN1-deficient mice were resistant to bleomycin-induced skin fibrosis, as visualized by reduced collagen accumulation and skin thickness suggesting that deposition/accumulation of collagen is impaired in the absence of CCN1. Conversely, CCN1-deficient mice showed unaltered wound closure kinetics, suggesting de novo collagen production in response to injury did not require CCN1. In response to either wounding or bleomycin, induction of α-smooth muscle actin-positive myofibroblasts was unaffected by loss of CCN1. CCN1 protein was overexpressed by dermal fibroblasts isolated from lesional (i.e., fibrotic) areas of patients with early onset diffuse scleroderma. Thus, CCN1 expression by fibroblasts, being essential for skin fibrosis, is a viable anti-fibrotic target. The role of endogenous CCN1 in skin biology is largely unknown Fibroblast-specific deletion CCN1 causes thinner skin and misaligned collagen CCN1-deficient mice were resistant to bleomycin-induced skin fibrosis Wound healing closure kinetics was unaffected by loss of CCN1 CCN1 may be as a target for anti-fibrotic therapy
Collapse
Affiliation(s)
- Katherine Quesnel
- Department of Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Xu Shi-Wen
- Centre for Rheumatology, University College London (Royal Free Campus), London, NW3 2PF, UK
| | - James Hutchenreuther
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Yizhi Xiao
- Department of Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Shangxi Liu
- Department of Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Alexander Peidl
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Deboki Naskar
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | - Walter L Siqueira
- Department of Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - David B O'Gorman
- Roth McFarlane Hand and Upper Limb Centre, Lawson Research Institute, London, ON, N6A 4V2, Canada.,Departments of Biochemistry and Surgery, University of Western Ontario, London, N6A 5C1, ON, N6A 5C1, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | - Richard J Stratton
- Centre for Rheumatology, University College London (Royal Free Campus), London, NW3 2PF, UK
| | - Andrew Leask
- Department of Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| |
Collapse
|
24
|
Peidl A, Perbal B, Leask A. Yin/Yang expression of CCN family members: Transforming growth factor beta 1, via ALK5/FAK/MEK, induces CCN1 and CCN2, yet suppresses CCN3, expression in human dermal fibroblasts. PLoS One 2019; 14:e0218178. [PMID: 31170244 PMCID: PMC6553774 DOI: 10.1371/journal.pone.0218178] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/28/2019] [Indexed: 12/16/2022] Open
Abstract
The role of the microenvironment in driving connective tissue disease is being increasingly appreciated. Matricellular proteins of the CCN family are signaling modifiers that are secreted by cells into the extracellular matrix microenvironment where they have profound, context-dependent effects on organ development, homeostasis and disease. Indeed, CCN proteins are emergent targets for therapeutic intervention. Recent evidence suggests that, in vivo, CCN3 has effects opposing CCN2. Moreover, when CCN3 expression is high, CCN2 expression is low. That is, they appear to be regulated in a yin/yang fashion, leading to the hypothesis that the CCN2:CCN3 ratio is important to control tissue homeostasis. To begin to test the hypothesis that alterations in CCN2:CCN3 expression might be important in skin biology in vivo, we evaluated the relative ex vivo effects of the profibrotic protein TGFbeta1 on dermal fibroblasts on protein and RNA expression of CCN3 and CCN2, as well as the related protein CCN1. We also used signal transduction inhibitors to begin to identify the signal transduction pathways controlling the ability of fibroblasts to respond to TGFbeta1. As anticipated, CCN1 and CCN2 protein and mRNA were induced by TGFbeta1 in human dermal fibroblasts. This induction was blocked by TAK1, FAK, YAP1 and MEK inhibition. Conversely, TGFbeta1 suppressed CCN3 mRNA expression in a fashion insensitive to FAK, MEK, TAK1 or YAP1 inhibition. Unexpectedly, CCN3 protein was not detected in human dermal fibroblasts basally. These data suggest that, in dermal fibroblasts, the profibrotic protein TGFbeta1 has a divergent effect on CCN3 relative to CCN2 and CCN1, both at the mRNA and protein level. Given that the major source in skin in vivo of CCN proteins are fibroblasts, our data are consistent that alterations in CCN2/CCN1: CCN3 ratios in response to profibrotic agents such as TGFbeta1 may play a role in connective tissue pathologies including fibrosis.
Collapse
Affiliation(s)
- Alexander Peidl
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | | | - Andrew Leask
- Department of Dentistry, University of Western Ontario, London, ON, Canada
- * E-mail:
| |
Collapse
|
25
|
Ramaswamy AK, Vorp DA, Weinbaum JS. Functional Vascular Tissue Engineering Inspired by Matricellular Proteins. Front Cardiovasc Med 2019; 6:74. [PMID: 31214600 PMCID: PMC6554335 DOI: 10.3389/fcvm.2019.00074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Modern regenerative medicine, and tissue engineering specifically, has benefited from a greater appreciation of the native extracellular matrix (ECM). Fibronectin, collagen, and elastin have entered the tissue engineer's toolkit; however, as fully decellularized biomaterials have come to the forefront in vascular engineering it has become apparent that the ECM is comprised of more than just fibronectin, collagen, and elastin, and that cell-instructive molecules known as matricellular proteins are critical for desired outcomes. In brief, matricellular proteins are ECM constituents that contrast with the canonical structural proteins of the ECM in that their primary role is to interact with the cell. Of late, matricellular genes have been linked to diseases including connective tissue disorders, cardiovascular disease, and cancer. Despite the range of biological activities, this class of biomolecules has not been actively used in the field of regenerative medicine. The intent of this review is to bring matricellular proteins into wider use in the context of vascular tissue engineering. Matricellular proteins orchestrate the formation of new collagen and elastin fibers that have proper mechanical properties-these will be essential components for a fully biological small diameter tissue engineered vascular graft (TEVG). Matricellular proteins also regulate the initiation of thrombosis via fibrin deposition and platelet activation, and the clearance of thrombus when it is no longer needed-proper regulation of thrombosis will be critical for maintaining patency of a TEVG after implantation. Matricellular proteins regulate the adhesion, migration, and proliferation of endothelial cells-all are biological functions that will be critical for formation of a thrombus-resistant endothelium within a TEVG. Lastly, matricellular proteins regulate the adhesion, migration, proliferation, and activation of smooth muscle cells-proper control of these biological activities will be critical for a TEVG that recellularizes and resists neointimal formation/stenosis. We review all of these functions for matricellular proteins here, in addition to reviewing the few studies that have been performed at the intersection of matricellular protein biology and vascular tissue engineering.
Collapse
Affiliation(s)
- Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Li J, Ye L, Sun PH, Zheng F, Ruge F, Satherley LK, Feng Y, Zhao H, Du G, Wang T, Yang Y, Ma X, Cheng S, Yang X, Yu H, Teng X, Si Y, Zhang Z, Jiang WG. Reduced NOV expression correlates with disease progression in colorectal cancer and is associated with survival, invasion and chemoresistance of cancer cells. Oncotarget 2018; 8:26231-26244. [PMID: 28412738 PMCID: PMC5432252 DOI: 10.18632/oncotarget.15439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Aberrant expression of nephroblastoma overexpressed (NOV) has been evident in certain malignancies. In the current study, we aim to investigate the role played by NOV in colorectal cancer (CRC). NOV expression was determined in a cohort of 359 CRC tissues and 174 normal colorectal tissues. Its impact on CRC cells was investigated using in vitro NOV knockdown and overexpression models. NOV transcripts were reduced in the CRC tumours compared with the paired adjacent normal colorectal tissues (p < 0.01) and was associated with distant metastases. NOV knockdown resulted in increased cell proliferation and invasion of RKO cells, whilst an opposite effect was seen in the HT115 NOV over expressing cells. A positive association between Caspase-3/-8 and NOV was seen in NOV knockdown and overexpression cell lines which contributed to the survival of serum deprived CRC cells. Further investigation showed that NOV regulated proliferation, survival and invasion through the JNK pathway. NOV knockdown in RKO cells reduced the responsiveness to 5-Fluorouracil treatment, whilst overexpression in HT115 cells exhibited a contrasting effect. Taken together, NOV is reduced in CRC tumours and this is associated with disease progression. NOV inhibits the proliferation and invasion of CRC cells in vitro. Inhibition of proliferation is mediated by a regulation of Caspase-3/-8, via the JNK pathway, which has potential for predicting and preventing chemoresistance.
Collapse
Affiliation(s)
- Jun Li
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.,Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.,Cardiff University, Capital Medical University Joint Centre for Biomedical Research and Cancer Institute, Capital Medical University, Beijing, 100069, China
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Ping-Hui Sun
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Fei Zheng
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.,Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Lucy K Satherley
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Yi Feng
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Huishan Zhao
- Cardiff University, Capital Medical University Joint Centre for Biomedical Research and Cancer Institute, Capital Medical University, Beijing, 100069, China
| | - Guifang Du
- Cardiff University, Capital Medical University Joint Centre for Biomedical Research and Cancer Institute, Capital Medical University, Beijing, 100069, China
| | - Tingting Wang
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yao Yang
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xuemei Ma
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shan Cheng
- Cardiff University, Capital Medical University Joint Centre for Biomedical Research and Cancer Institute, Capital Medical University, Beijing, 100069, China
| | - Xiaomei Yang
- Cardiff University, Capital Medical University Joint Centre for Biomedical Research and Cancer Institute, Capital Medical University, Beijing, 100069, China
| | - Hefen Yu
- Cardiff University, Capital Medical University Joint Centre for Biomedical Research and Cancer Institute, Capital Medical University, Beijing, 100069, China
| | - Xu Teng
- Cardiff University, Capital Medical University Joint Centre for Biomedical Research and Cancer Institute, Capital Medical University, Beijing, 100069, China
| | - Yang Si
- Cardiff University, Capital Medical University Joint Centre for Biomedical Research and Cancer Institute, Capital Medical University, Beijing, 100069, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.,Cardiff University, Capital Medical University Joint Centre for Biomedical Research and Cancer Institute, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
27
|
Chatterjee A, Barnard J, Moravec C, Desnoyer R, Tirupula K, Karnik SS. Connective tissue growth factor dependent collagen gene expression induced by MAS agonist AR234960 in human cardiac fibroblasts. PLoS One 2017; 12:e0190217. [PMID: 29287092 PMCID: PMC5747466 DOI: 10.1371/journal.pone.0190217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022] Open
Abstract
Perspectives on whether the functions of MAS, a G protein-coupled receptor, are beneficial or deleterious in the heart remain controversial. MAS gene knockout reduces coronary vasodilatation leading to ischemic injury. G protein signaling activated by MAS has been implicated in progression of adaptive cardiac hypertrophy to heart failure and fibrosis. In the present study, we observed increased expression of MAS, connective tissue growth factor (CTGF) and collagen genes in failing (HF) human heart samples when compared to non-failing (NF). Expression levels of MAS are correlated with CTGF in HF and NF leading to our hypothesis that MAS controls CTGF production and the ensuing expression of collagen genes. In support of this hypothesis we show that the non-peptide MAS agonist AR234960 increases both mRNA and protein levels of CTGF via ERK1/2 signaling in HEK293-MAS cells and adult human cardiac fibroblasts. MAS-mediated CTGF expression can be specifically blocked by MAS inverse agonist AR244555 and also by MEK1 inhibition. Expression of CTGF gene was essential for MAS-mediated up-regulation of different collagen subtype genes in HEK293-MAS cells and human cardiac fibroblasts. Knockdown of CTGF by RNAi disrupted collagen gene regulation by the MAS-agonist. Our data indicate that CTGF mediates the profibrotic effects of MAS in cardiac fibroblasts. Blocking MAS-CTGF-collagen pathway should be considered for pharmacological intervention for HF.
Collapse
Affiliation(s)
- Arunachal Chatterjee
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Zoology, Acharya Jagadish Chandra Bose College, Kolkata, West Bengal, India
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Christine Moravec
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Russell Desnoyer
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Kalyan Tirupula
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Sadashiva S. Karnik
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
Hutchenreuther J, Leask A. Why target the tumor stroma in melanoma? J Cell Commun Signal 2017; 12:113-118. [PMID: 29110248 DOI: 10.1007/s12079-017-0419-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022] Open
Abstract
Melanoma metastasis is fatal. Melanoma cells are often characterized by an activated extracellular signal-regulated kinase (ERK) pathway downstream of mutations in BRAF. Therapies targeting these BRAF mutations are useful for a while; however, patients ultimately develop resistance to these therapies. Recent evidence suggests that this resistance occurs when tumor cells leave their microenvironment and migrate on a stiff, activated tumor stroma; that is, this resistance is linked to the presence of an extracellular matrix reminiscent of a fibrotic micronvironment. These data suggest that agents targeting fibrosis might be used to treat melanoma. We therefore discuss what is known about the tumor stroma in melanoma. An emergent target, CCN2 (CTGF), that is required for fibrosis, may also be a good target for drug-resistant melanoma. Intriguingly, anti-CCN2 antibodies are currently under clinical development.
Collapse
Affiliation(s)
- James Hutchenreuther
- Departments of Physiology and Pharamacology and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Andrew Leask
- Departments of Physiology and Pharamacology and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
29
|
Takigawa M. An early history of CCN2/CTGF research: the road to CCN2 via hcs24, ctgf, ecogenin, and regenerin. J Cell Commun Signal 2017; 12:253-264. [PMID: 29076115 DOI: 10.1007/s12079-017-0414-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023] Open
Abstract
The principal aim of this historical review is to present the processes by which the different aspects of CCN2/CTGF/Hcs24 were discovered by different groups and how much CCN2/CTGF, by being integrated into CCN family, has contributed to the establishment of the basic concepts regarding the role and functions of this new class of proteins. This review should be particularly useful to new investigators who have recently entered this exciting field of study and also provides a good opportunity to acknowledge the input of those individuals who participated in the development of this scientific field.
Collapse
Affiliation(s)
- Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8525, Japan.
| |
Collapse
|
30
|
Prakoura N, Chatziantoniou C. Matricellular Proteins and Organ Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0138-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Takayama I, Tanabe H, Nishiyama T, Ito H, Amizuka N, Li M, Katsube KI, Kii I, Kudo A. Periostin is required for matricellular localization of CCN3 in periodontal ligament of mice. J Cell Commun Signal 2016; 11:5-13. [PMID: 28013443 DOI: 10.1007/s12079-016-0371-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/14/2016] [Indexed: 01/08/2023] Open
Abstract
CCN3 is a matricellular protein that belongs to the CCN family. CCN3 consists of 4 domains: insulin-like growth factor-binding protein-like domain (IGFBP), von Willebrand type C-like domain (VWC), thrombospondin type 1-like domain (TSP1), and the C-terminal domain (CT) having a cysteine knot motif. Periostin is a secretory protein that binds to extracellular matrix proteins such as fibronectin and collagen. In this study, we found that CCN3 interacted with periostin. Immunoprecipitation analysis revealed that the TSP1-CT interacted with the 4 repeats of the Fas 1 domain of periostin. Immunofluorescence analysis showed co-localization of CCN3 and periostin in the periodontal ligament of mice. In addition, targeted disruption of the periostin gene in mice decreased the matricellular localization of CCN3 in the periodontal ligament. Thus, these results indicate that periostin was required for the matricellular localization of CCN3 in the periodontal ligament, suggesting that periostin mediated an interaction between CCN3 and the extracellular matrix.
Collapse
Affiliation(s)
- Issei Takayama
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-33, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Hideyuki Tanabe
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-33, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Takashi Nishiyama
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-33, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke-Shi, Tochigi, Japan
| | - Harumi Ito
- Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Norio Amizuka
- Division of Oral Health Science, Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - Minqi Li
- Division of Oral Health Science, Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology, Shandong University, Wenhua West Road 44-1, Jinan, 250012, China
| | - Ken-Ichi Katsube
- Department of Molecular Pathology, Graduate School of Tokyo Medical and Dental University, Tokyo, 113-8519, Japan.,Department of Nursing Science, Faculty of Human Care, Tohto College of Health Sciences, Saitama, Japan
| | - Isao Kii
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-33, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan. .,Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Akira Kudo
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-33, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
32
|
Fu H, Tian Y, Zhou L, Zhou D, Tan RJ, Stolz DB, Liu Y. Tenascin-C Is a Major Component of the Fibrogenic Niche in Kidney Fibrosis. J Am Soc Nephrol 2016; 28:785-801. [PMID: 27612995 DOI: 10.1681/asn.2016020165] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022] Open
Abstract
Kidney fibrosis initiates at certain focal sites in which the fibrogenic niche provides a specialized microenvironment that facilitates fibroblast activation and proliferation. However, the molecular identity of these fibrogenic niches is poorly characterized. Here, we determined whether tenascin-C (TNC), an extracellular matrix glycoprotein, is a component of the fibrogenic niche in kidney fibrosis. In vivo, TNC expression increased rapidly in kidneys subjected to unilateral ureteral obstruction or ischemia/reperfusion injury and predominantly localized at the foci rich in fibroblasts in renal interstitium. In vitro, TNC selectively promoted renal interstitial fibroblast proliferation, bromodeoxyuridine incorporation, and the expression of proliferation-related genes. The mitogenic activity of TNC required the integrin/focal adhesion kinase/mitogen-activated protein kinase signaling cascade. Using decellularized extracellular matrix scaffolds, we found that TNC-enriched scaffolds facilitated fibroblast proliferation, whereas TNC-deprived scaffolds inhibited proliferation. Matrix scaffold prepared from fibrotic kidney also promoted greater ex vivo fibroblast proliferation than did scaffolds prepared from healthy kidney. Conversely, small interfering RNA-mediated knockdown of TNC in vivo repressed injury-induced fibroblast expansion and renal fibrosis. These studies identify TNC as a major constituent of the fibrogenic niche that promotes fibroblast proliferation, and illustrate a pivotal role for the TNC-enriched microenvironment in kidney fibrogenesis.
Collapse
Affiliation(s)
- Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and.,Departments of Pathology
| | - Yuan Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | | | | | - Donna B Stolz
- Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and .,Departments of Pathology
| |
Collapse
|
33
|
Li J, Gao X, Ji K, Sanders AJ, Zhang Z, Jiang WG, Ji J, Ye L. Differential expression of CCN family members CYR611, CTGF and NOV in gastric cancer and their association with disease progression. Oncol Rep 2016; 36:2517-2525. [PMID: 27633176 PMCID: PMC5055206 DOI: 10.3892/or.2016.5074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/30/2016] [Indexed: 12/15/2022] Open
Abstract
CCN is an acronym for cysteine-rich protein 61 (CYR61), connective tissue growth factor (CTGF) and nephroblastoma overexpressed (NOV). Aberrations of certain CCN members including CYR61, CTGF, Wnt1-inducible signalling pathway protein (WISP)-1 and -3 have been reported in gastric cancer. The present study aimed to examine the clinical relevance of NOV along with CYR61 and CTGF in gastric cancer by analysing their transcript levels. CYR61, CTGF and NOV transcript expression in 324 gastric cancer samples with paired adjacent normal gastric tissues were determined using real-time quantitative PCR and the results were statistically analysed against patient clinicopathological data using SPSS software. NOV mRNA levels in gastric cancer tissues were significantly elevated when compared with levels in their paired adjacent non-cancerous tissues. Local advanced tumours with invasive expansion (T3 and T4) expressed higher levels of NOV (p=0.013) compared with the less invasive tumours (T1 and T2). CYR61 transcript levels were also significantly increased in gastric cancers compared with levels in the adjacent non-cancerous tissues. Kaplan-Meier survival curves revealed that patients with CYR61-low transcript levels had longer overall survival (OS) (p=0.018) and disease-free survival (DFS) (p=0.015). NOV overexpression promoted the in vitro proliferation of AGS cells while the knockdown resulted in a reduced proliferation of HGC27 cells. A similar effect was observed for the invasion of these two gastric cancer cell lines. NOV expression was increased in gastric cancer which was associated with local invasion and distant metastases. Taken together, the expression of NOV and CYR61 was increased in gastric cancer. The elevated expression of CYR61 was associated with poorer survival. NOV promoted proliferation and invasion of gastric cancer cells. Further investigations may highlight their predictive and therapeutic potential in gastric cancer.
Collapse
Affiliation(s)
- Jun Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Xi-Cheng, Beijing 100050, P.R. China
| | - Xiangyu Gao
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Ke Ji
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Xi-Cheng, Beijing 100050, P.R. China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Chinese Ministry of Education), Department of GI Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
34
|
FG-3019, a Human Monoclonal Antibody Recognizing Connective Tissue Growth Factor, is Subject to Target-Mediated Drug Disposition. Pharm Res 2016; 33:1833-49. [PMID: 27059922 PMCID: PMC4942499 DOI: 10.1007/s11095-016-1918-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/30/2016] [Indexed: 12/27/2022]
Abstract
Purpose To evaluate and model the pharmacokinetic and pharmacodynamic behavior in rats of FG-3019, a human monoclonal antibody targeting connective tissue growth factor (CTGF). Methods FG-3019, human CTGF (rhCTGF), or the N-terminal domain of rhCTGF were administered intravenously to rats and concentrations of these proteins as well as endogenous CTGF were determined by immunoassays. FG-3019, or 125I-labeled FG-3019, and human CTGF (rhCTGF) were co-administered to assess the impact of CTGF on the elimination rate and tissue localization of FG-3019, which was further characterized by immunohistochemical analysis. A PK/PD model for target-mediated elimination of FG-3019 was developed to fit the kinetic data. Results FG-3019 exhibited non-linear pharmacokinetics in rats. Circulating concentrations of the N-terminal half of CTGF increased after dosing with FG-3019, reached maximal levels after 1–5 days, and returned toward baseline levels as FG-3019 cleared from the circulation, whereas the concentration of intact CTGF was unaffected by administration of FG-3019. Co-administration of rhCTGF dramatically enhanced the rate of FG-3019 elimination, redistributing the majority of 125I-labeled FG-3019 from the blood to the liver, kidney, spleen and adrenal gland. FG-3019 co-administered with CTGF was found along the sinusoids of the liver and adrenal glands, the capillaries of the kidney glomeruli and in the spleen. A pharmacokinetic model for target-mediated elimination of FG-3019 was used to fit the time courses of FG-3019 and endogenous CTGF plasma concentrations, as well as time courses of rhCTGF and rhCTGF N-fragment after intravenous administration of these species. Conclusions FG-3019 is subject to target mediated elimination in rats. Electronic supplementary material The online version of this article (doi:10.1007/s11095-016-1918-0) contains supplementary material, which is available to authorized users.
Collapse
|