1
|
Essola JM, Zhang M, Yang H, Li F, Xia B, Mavoungou JF, Hussain A, Huang Y. Exosome regulation of immune response mechanism: Pros and cons in immunotherapy. Bioact Mater 2024; 32:124-146. [PMID: 37927901 PMCID: PMC10622742 DOI: 10.1016/j.bioactmat.2023.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Due to its multiple features, including the ability to orchestrate remote communication between different tissues, the exosomes are the extracellular vesicles arousing the highest interest in the scientific community. Their size, established as an average of 30-150 nm, allows them to be easily uptaken by most cells. According to the type of cells-derived exosomes, they may carry specific biomolecular cargoes used to reprogram the cells they are interacting with. In certain circumstances, exosomes stimulate the immune response by facilitating or amplifying the release of foreign antigens-killing cells, inflammatory factors, or antibodies (immune activation). Meanwhile, in other cases, they are efficiently used by malignant elements such as cancer cells to mislead the immune recognition mechanism, carrying and transferring their cancerous cargoes to distant healthy cells, thus contributing to antigenic invasion (immune suppression). Exosome dichotomic patterns upon immune system regulation present broad advantages in immunotherapy. Its perfect comprehension, from its early biogenesis to its specific interaction with recipient cells, will promote a significant enhancement of immunotherapy employing molecular biology, nanomedicine, and nanotechnology.
Collapse
Affiliation(s)
- Julien Milon Essola
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Jacques François Mavoungou
- Université Internationale de Libreville, Libreville, 20411, Gabon
- Central and West African Virus Epidemiology, Libreville, 2263, Gabon
- Département de phytotechnologies, Institut National Supérieur d’Agronomie et de Biotechnologie, Université des Sciences et Techniques de Masuku, Franceville, 901, Gabon
- Institut de Recherches Agronomiques et Forestiers, Centre National de la Recherche Scientifique et du développement Technologique, Libreville, 16182, Gabon
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Rigerna Therapeutics Co. Ltd., China
| |
Collapse
|
2
|
Wu B, Wang Q, Shi X, Jiang M. Targeting Endocytosis and Cell Communications in the Tumor Immune Microenvironment. Cell Commun Signal 2022; 20:161. [PMID: 36258231 PMCID: PMC9578241 DOI: 10.1186/s12964-022-00968-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/23/2022] [Indexed: 01/18/2023] Open
Abstract
The existence of multiple endocytic pathways is well known, and their exact biological effects in tumors have been intensively investigated. Endocytosis can affect the connection between tumor cells and determine the fate of tumor cells. Many relationships between endocytosis and tumor cells have been elucidated, but the mechanism of endocytosis between different types of cells in tumors needs to be explored in greater depth. Endocytic receptors sense the environment and are induced by specific ligands to trigger communication between tumor and immune cells. Crosstalk in the tumor microenvironment can occur through direct contact between cell adhesion molecules or indirectly through exosomes. So a better understanding of the endocytic pathways that control cell adhesion molecules and function is expected to lead to new candidates for cancer treatment. In additional, tumor-derived exosomes may changes immune cell function, which may be a key role for tumors to evade immune detection and response. The overall understanding of exosomes through endocytosis is also expected to bring new candidates for therapeutic regulation of tumor immune microenvironment. In this case, endocytic pathways coordinate cell adhesion molecules and exosomes and can be used as targets in the tumor immune microenvironment for cancer treatment. Video Abstract
Collapse
|
3
|
Xu J, Cao W, Wang P, Liu H. Tumor-Derived Membrane Vesicles: A Promising Tool for Personalized Immunotherapy. Pharmaceuticals (Basel) 2022; 15:ph15070876. [PMID: 35890175 PMCID: PMC9318328 DOI: 10.3390/ph15070876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor-derived membrane vesicles (TDMVs) are non-invasive, chemotactic, easily obtained characteristics and contain various tumor-borne substances, such as nucleic acid and proteins. The unique properties of tumor cells and membranes make them widely used in drug loading, membrane fusion and vaccines. In particular, personalized vectors prepared using the editable properties of cells can help in the design of personalized vaccines. This review focuses on recent research on TDMV technology and its application in personalized immunotherapy. We elucidate the strengths and challenges of TDMVs to promote their application from theory to clinical practice.
Collapse
Affiliation(s)
- Jiabin Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou 221004, China; (J.X.); (P.W.)
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Jinan University, Zhuhai 519000, China;
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Xuzhou 221004, China; (J.X.); (P.W.)
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Jinan University, Zhuhai 519000, China;
- Correspondence:
| |
Collapse
|
4
|
Chen Z, Yuan R, Hu S, Yuan W, Sun Z. Roles of the Exosomes Derived From Myeloid-Derived Suppressor Cells in Tumor Immunity and Cancer Progression. Front Immunol 2022; 13:817942. [PMID: 35154134 PMCID: PMC8829028 DOI: 10.3389/fimmu.2022.817942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor immunity is involved in malignant tumor progression. Myeloid-derived suppressor cells (MDSCs) play an irreplaceable role in tumor immunity. MDSCs are composed of immature myeloid cells and exhibit obvious immunomodulatory functions. Exosomes released by MDSCs (MDSCs-Exos) have similar effects to parental MDSCs in regulating tumor immunity. In this review, we provided a comprehensive description of the characteristics, functions and mechanisms of exosomes. We analyzed the immunosuppressive, angiogenesis and metastatic effects of MDSCs-Exos in different tumors through multiple perspectives. Immunotherapy targeting MDSCs-Exos has demonstrated great potential in cancers and non-cancerous diseases.
Collapse
Affiliation(s)
- Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Zhang M, Xie Y, Li S, Ye X, Jiang Y, Tang L, Wang J. Proteomics Analysis of Exosomes From Patients With Active Tuberculosis Reveals Infection Profiles and Potential Biomarkers. Front Microbiol 2022; 12:800807. [PMID: 35069505 PMCID: PMC8770970 DOI: 10.3389/fmicb.2021.800807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Although mycobacterial proteins in exosomes from peripheral serum of patients with tuberculosis (TB) have been identified, other exact compositions of exosomes remain unknown. In the present study, a comprehensive proteomics analysis of serum exosomes derived from patients with active TB (ATB) was performed. Exosomes from patients with ATB were characterized using nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and western blotting analysis. Then identified protein components were quantified by label-free proteomics and were determined via bioinformatics analysis. A total of 123 differential proteins were identified in ATB serum exosomes and analyzed with Gene Ontology (GO) analysis. Among these proteins heat shock protein70 (HSP70), CD81, major histocompatibility complex-I (MHC-I ) and tumor susceptibility gene101 (TSG101) were present in exosomes of ATB and normal individuals confirmed via western blotting. In addition, among identified exosomal proteins lipopolysaccharide binding protein (LBP) increased significantly, but CD36 and MHC-I decreased significantly in ATB exosomes. Meanwhile, MHC-I was down-expressed in serum and peripheral blood mononuclear cells (PBMCs) of ATB, but interestingly CD36 was down-regulated in serum and up-expressed in PBMCs of ATB patients validated with ELISA and flow cytometry. CD36 was up-regulated by M. tuberculosis H37Ra infection in macrophages and suppressed in exosomes from H37Ra infected macrophages detected by western blotting. This study provided a comprehensive description of the exosome proteome in the serum of patients with ATB and revealed certain potential biomarkers associated with TB infection.
Collapse
Affiliation(s)
- Min Zhang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Zhenjiang, China
| | - Yiping Xie
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Zhenjiang, China
| | - Shasha Li
- Central Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaojian Ye
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Zhenjiang, China
| | - Yibiao Jiang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Zhenjiang, China
| | - Lijun Tang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Jianjun Wang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Gholipour E, Sarvarian P, Samadi P, Talebi M, Movassaghpour A, Motavalli R, Hojjat-Farsangi M, Yousefi M. Exosome: From leukemia progression to a novel therapeutic approach in leukemia treatment. Biofactors 2020; 46:698-715. [PMID: 32797698 DOI: 10.1002/biof.1669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Exosomes, as small vesicles, are released by tumor cells and tumor microenvironment (cells and function as key intercellular mediators and effects on different processes including tumorigenesis, angiogenesis, drug resistance, and evasion from immune system. These functions are due to exosomes' biomolecules which make them as efficient markers in early diagnosis of the disease. Also, exosomes have been recently applied in vaccination. The potential role of exosomes in immune response toward leukemic cells makes them efficient immunotherapeutic agents treating leukemia. Furthermore, variations in exosomes contents make them beneficial to be used in treating different diseases. This review introduces the role of exosomes in the development of hematological malignancies and evaluates their functional role in the treatment of these malignancies.
Collapse
Affiliation(s)
- Elham Gholipour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Sarvarian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Samadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Immune and Gene Therapy Lab, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Aging Research Institute, Tabriz university of Medical Sciences, Tabriz, Iran
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Yao X, Tu Y, Xu Y, Guo Y, Yao F, Zhang X. Endoplasmic reticulum stress-induced exosomal miR-27a-3p promotes immune escape in breast cancer via regulating PD-L1 expression in macrophages. J Cell Mol Med 2020; 24:9560-9573. [PMID: 32672418 PMCID: PMC7520328 DOI: 10.1111/jcmm.15367] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/03/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Immune escape of breast cancer cells contributes to breast cancer pathogenesis. Tumour microenvironment stresses that disrupt protein homeostasis can produce endoplasmic reticulum (ER) stress. The miRNA‐mediated translational repression of mRNAs has been extensively studied in regulating immune escape and ER stress in human cancers. In this study, we identified a novel microRNA (miR)‐27a‐3p and investigated its mechanistic role in promoting immune evasion. The binding affinity between miR‐27a‐3p and MAGI2 was predicted using bioinformatic analysis and verified by dual‐luciferase reporter assay. Ectopic expression and inhibition of miR‐27a‐3p in breast cancer cells were achieved by transduction with mimics and inhibitors. Besides, artificial modulation of MAGI2 and PTEN was done to explore their function in ER stress and immune escape of cancer cells. Of note, exosomes were derived from cancer cells and co‐cultured with macrophages for mechanistic studies. The experimental data suggested that ER stress biomarkers including GRP78, PERK, ATF6, IRE1α and PD‐L1 were overexpressed in breast cancer tissues relative to paracancerous tissues. Endoplasmic reticulum stress promoted exosome secretion and elevated exosomal miR‐27a‐3p expression. Elevation of miR‐27a‐3p and PD‐L1 levels in macrophages was observed in response to exosomes‐overexpressing miR‐27a‐3p in vivo and in vitro. miR‐27a‐3p could target and negatively regulate MAGI2, while MAGI2 down‐regulated PD‐L1 by up‐regulating PTEN to inactivate PI3K/AKT signalling pathway. Less CD4+, CD8+ T cells and IL‐2, and T cells apoptosis were observed in response to co‐culture of macrophages and CD3+ T cells. Conjointly, exosomal miR‐27a‐3p promotes immune evasion by up‐regulating PD‐L1 via MAGI2/PTEN/PI3K axis in breast cancer.
Collapse
Affiliation(s)
- Xiaoli Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yulin Xu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yueyue Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinghua Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Yan W, Jiang S. Immune Cell-Derived Exosomes in the Cancer-Immunity Cycle. Trends Cancer 2020; 6:506-517. [PMID: 32460004 DOI: 10.1016/j.trecan.2020.02.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
Abstract
Cells can communicate through extracellular vesicle (EV) secretion and uptake. Exosomes are lipid bilayer-enclosed EVs of 30-150 nm in diameter, which can transfer RNA, functional proteins, lipids, and metabolites to recipient cells in vivo. Most cell types, including immune cells, can secrete and uptake exosomes. Biogenesis, secretion, and uptake of immune cell-derived exosomes are regulated by intracellular proteins and extracellular stimuli. Immune cell-derived exosomes can mediate crosstalk between innate and adaptive immunity and regulate cancer progression and metastasis. The dichotomous roles of immune cell-derived exosomes towards tumor cells can induce suppressive or active immune responses. Hence, immune cell-secreted exosomes may have applications in cancer diagnosis and immunotherapy and could potentially be developed for vaccination and chemotherapy drug transportation.
Collapse
Affiliation(s)
- Wei Yan
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Shuai Jiang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
9
|
Chang YT, Peng HY, Hu CM, Huang SC, Tien SC, Jeng YM. Pancreatic cancer-derived small extracellular vesical Ezrin regulates macrophage polarization and promotes metastasis. Am J Cancer Res 2020; 10:12-37. [PMID: 32064151 PMCID: PMC7017748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023] Open
Abstract
Small extracellular vesicles (sEVs) mediate the interaction between tumor and tumor-associated macrophages (TAMs). This study aims to demonstrate that the pancreatic ductal adenocarcinoma (PDAC)-derived sEV Ezrin (sEV-EZR) could modulate macrophage polarization and promote PDAC metastasis. We isolated PDAC-derived sEVs and plasma sEVs from PDAC patients. Human blood mononuclear cell (PBMC)-derived macrophages were treated with PDAC-derived sEVs or the counterpart depleted Ezrin (EZR) with shRNA-mediated knockdown. We used enzyme-linked immunosorbent assays and flow cytometry to monitor macrophages polarization. NOD/SCID/IL2Rγnull mice were treated with sEVs to study PDAC liver metastasis. The plasma sEV-EZR levels of 165 PDAC patients and 151 high-risk controls were analyzed. The EZR levels are higher in sEVs derived from PDAC cells and PDAC-patient plasma than that of the normal controls. PDAC-derived sEVs modulate the polarization of macrophages to M2 phenotype, while PDAC-shEZR-derived sEVs polarize macrophages into M1 phenotype. We found an increase in M1 TAMs and a decrease in M2 TAMs in orthotropic tumors treated with PDAC-shEZR-derived sEVs. The amount of liver metastasis in PDAC-shEZR-derived sEVs-treated mice was observed to be smaller than that of controls. The mean plasma sEV-EZR levels from PDAC patients were significantly higher than those from the controls (32.43±20.78 vs. 21.88±11.43 pg/ml; P<0.0001). The overall survival in the high-plasma sEV-EZR patients was significantly shorter than that in the low-EZR group (6.94±15.25 vs. 9.63±15.11 months; P=0.0418). sEV-EZR could modulate macrophage polarization and promote metastasis in PDAC. Targeting sEV-EZR can be considered a promising therapeutic strategy to inhibit PDAC metastasis.
Collapse
Affiliation(s)
- Yu-Ting Chang
- Department of Internal Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Hsuan-Yu Peng
- Department of Internal Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia SinicaTaipei, Taiwan
| | | | - Sui-Chi Tien
- Genomics Research Center, Academia SinicaTaipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
10
|
Mao X, Jin F. The Exosome And Breast Cancer Cell Plasticity. Onco Targets Ther 2019; 12:9817-9825. [PMID: 31819481 PMCID: PMC6874230 DOI: 10.2147/ott.s214133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cell plasticity is the ability of cancer cells to reversibly interchange between distinct cell status, which plays a key role in cancer progression. Cancer cell plasticity is now known to be shaped by the secreted nanoparticles termed exosomes which transport proteins and lipids as well as nucleic acids. These aspects have emerged as key determinants of tumor progression and targeting, with approaches such as immunotherapy showing promise in the clinic. While significant strides have been made in this research area, some very interesting questions still warrant more and deeper investigation. We provide a review of the interplay between exosomes and breast cancer cell plasticity, and the potential implication in metastases and drug-resistance.
Collapse
Affiliation(s)
- Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| |
Collapse
|
11
|
Weston WW, Ganey T, Temple HT. The Relationship between Exosomes and Cancer: Implications for Diagnostics and Therapeutics. BioDrugs 2019; 33:137-158. [DOI: 10.1007/s40259-019-00338-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Role of tumor-derived exosomes in cancer metastasis. Biochim Biophys Acta Rev Cancer 2018; 1871:12-19. [PMID: 30419312 DOI: 10.1016/j.bbcan.2018.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022]
Abstract
The highlights of cancer research include the discovery of exosomes, which are small (30-100 nm) sized vesicular nanoparticles released virtually by all cells. Tumor-derived exosomes (TDEs) are notoriously known for orchestrating the invasion-metastasis cascade via systemic pathways that we have previously proposed (1), resulting in a paradigm shift of our understanding about the pathobiology of metastases. In principle, exosomes serve as transport medium for proteins, mRNAs and miRNAs to transmit targeted cues from the primary cell to distant sites via horizontal transfer or cell-receptor interaction. In this chapter, we seek to explore in-depth the mechanisms engendering TDE in the metastatic cascade, along with experimental models to augment our understanding. The aforementioned has also paved way for parallel advancements in the therapeutic armamentarium, as evident from pronounced efforts to exploit the metastatic process for therapeutic targeting. In this light, we aim to examine potential anti-metastatic therapeutic opportunities derived from exosomal research. Lastly, exosomes may play a crucial role in the contemporary era of "liquid biopsies", given the array of molecular information with diagnostic and predictive indications. We thus intend to end this chapter off by exploring future applications of exosomes that could illuminate shortcomings and propel advancements in biomarker research.
Collapse
|
13
|
Li Q, Li B, Li Q, Wei S, He Z, Huang X, Wang L, Xia Y, Xu Z, Li Z, Wang W, Yang L, Zhang D, Xu Z. Exosomal miR-21-5p derived from gastric cancer promotes peritoneal metastasis via mesothelial-to-mesenchymal transition. Cell Death Dis 2018; 9:854. [PMID: 30154401 PMCID: PMC6113299 DOI: 10.1038/s41419-018-0928-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023]
Abstract
Peritoneal metastasis is a primary metastatic route for gastric cancers, and the mechanisms underlying this process are still unclear. Peritoneal mesothelial cells (PMCs) undergo mesothelial-to-mesenchymal transition (MMT) to provide a favorable environment for metastatic cancer cells. In this study, we investigated how the exosomal miR-21-5p induces MMT and promotes peritoneal metastasis. Gastric cancer (GC)-derived exosomes were identified by transmission electron microscopy and western blot analysis, then the uptake of exosomes was confirmed by PKH-67 staining. The expression of miR-21-5p and SMAD7 were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, and the interactions between miR-21-5p and its target genes SMAD7 were confirmed by Luciferase reporter assays. The MMT of PMCs was determined by invasion assays, adhesion assays, immunofluorescent assay, and western blot. Meanwhile, mouse model of tumor peritoneal dissemination model was performed to investigate the role of exosomal miR-21-5p in peritoneal metastasis in vivo. We found that PMCs could internalize GC-derived exosomal miR-21-5p and led to increased levels of miR-21-5p in PMCs. Through various types of in vitro and in vivo assays, we confirmed that exosomal miR-21-5p was able to induce MMT of PMCs and promote tumor peritoneal metastasis. Moreover, our study revealed that this process was promoted by exosomal miR-21-5p through activating TGF-β/Smad pathway via targeting SMAD7. Altogether, our data suggest that exosomal miR-21-5p induces MMT of PMCs and promote cancer peritoneal dissemination by targeting SMAD7. The exosomal miR-21-5p may be a novel therapeutic target for GC peritoneal metastasis.
Collapse
Affiliation(s)
- Qiang Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Qing Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Song Wei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Zhongyuan He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Xiaoxu Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Zhipeng Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China.
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| |
Collapse
|
14
|
Zanotti S, Gibertini S, Blasevich F, Bragato C, Ruggieri A, Saredi S, Fabbri M, Bernasconi P, Maggi L, Mantegazza R, Mora M. Exosomes and exosomal miRNAs from muscle-derived fibroblasts promote skeletal muscle fibrosis. Matrix Biol 2018; 74:77-100. [PMID: 29981373 DOI: 10.1016/j.matbio.2018.07.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 12/24/2022]
Abstract
Exosomes, natural carriers of mRNAs, non-coding RNAs and proteins between donor and recipient cells, actively contribute to cell-cell communication. We investigated the potential pro-fibrotic role of exosomes released by muscle-derived fibroblasts of Duchenne muscular dystrophy (DMD) patients, and of miRNAs carried by exosomes. By fibrosis focused array analysis we found that exosomes from DMD fibroblasts, had significantly higher levels of miR-199a-5p, a miRNA up-regulated in fibrotic conditions, compared to control exosomes, while levels in myoblast-derived exosomes were not increased. In control fibroblasts, exposure to DMD fibroblast-derived exosomes induced a myofibroblastic phenotype with increase in α-smooth actin, collagen and fibronectin transcript and protein expression, soluble collagen production and deposition, cell proliferation, and activation of Akt and ERK signaling, while exposure to control exosomes did not. Transfecting control fibroblasts or loading control exosomes with miR-199a-5p mimic or inhibitor induced opposing effects on fibrosis-related mRNAs and proteins, on collagen production and Akt and ERK pathways. Finally, injection of DMD fibroblast-derived exosomes into mouse tibialis anterior muscle after cardiotoxin-induced necrosis, produced greater fibrosis than control exosomes. Our findings indicate that exosomes produced by local fibroblasts in the DMD muscle are able to induce phenotypic conversion of normal fibroblasts to myofibroblasts thereby increasing the fibrotic response. This conversion is related to transfer of high levels of miR-199a-5p and to reduction of its target caveolin-1; both, therefore, are potential therapeutic targets in muscle fibrosis.
Collapse
Affiliation(s)
- Simona Zanotti
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Sara Gibertini
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Flavia Blasevich
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Cinzia Bragato
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy; PhD Program in Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Alessandra Ruggieri
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Simona Saredi
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Marco Fabbri
- Unit of Haematopathology, European Institute of Oncology, IEO, Milan 20141, Italy
| | - Pia Bernasconi
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Renato Mantegazza
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy.
| |
Collapse
|
15
|
Jin J, Menon R. Placental exosomes: A proxy to understand pregnancy complications. Am J Reprod Immunol 2017; 79:e12788. [PMID: 29193463 DOI: 10.1111/aji.12788] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes (30- to 150-nm particles), originating from multivesicular bodies by the invagination of the endosomal membrane, are communication channels between cells. Exosomes are released by various cell types and cargo proteins, lipids, and nucleic acids reflecting the physiologic status of their cells of origin and cause functional changes in recipient cells, which are likely dependent on their quantity and/or cargo contents. Recently, placental exosomes, produced by various placental cell types, have been isolated from maternal blood using the placental protein-specific marker, placental alkaline phosphatase (PLAP). PLAP-positive exosomes are seen in maternal blood as early as the first trimester of pregnancy and increase as gestation progresses, with maximum numbers seen at term. Although the functional relevance of placental exosomes is still under investigation, several studies have linked placental exosomes changes (quantity and cargo) reflecting placental dysfunctions associated with adverse pregnancy events. As placental exosomes can be isolated from maternal blood, they are liquid biopsies reflecting placental functions. Hence, they are useful as biomarkers of placental functions and dysfunctions obtainable through non-invasive approaches. This review summarizes the biogenesis, release, and functions of exosomes and specifically expounds the role of placental-specific exosomes and their significance associated with pregnancy complications.
Collapse
Affiliation(s)
- Jin Jin
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,Department of Gynaecology and Obstetrics, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
16
|
Lv L, Li C, Zhang X, Ding N, Cao T, Jia X, Wang J, Pan L, Jia H, Li Z, Zhang J, Chen F, Zhang Z. RNA Profiling Analysis of the Serum Exosomes Derived from Patients with Active and Latent Mycobacterium tuberculosis Infection. Front Microbiol 2017; 8:1051. [PMID: 28659881 PMCID: PMC5466984 DOI: 10.3389/fmicb.2017.01051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/26/2017] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis (TB) has exceeded HIV as the most lethal infectious disease globally for two consecutive years. Moreover, one third of the world’s population is estimated to have latent tuberculosis infection (LTBI). This is mainly because of difficulties associated with diagnosis and treatment for both TB and LTBI patients. Exosomes provide a promising research tool for TB diagnosis and treatment because they are released from various cells containing valuable biochemical information related to disease. In this study, we performed RNA-sequencing analysis on exosomes derived from clinical specimens of healthy controls (HC), active tuberculosis (ATB), and LTBI patients. Our results revealed the distinct gene expression profiles of the exosomes from LTBI and ATB patients. (1) We identified many distinct up-regulated and down-regulated differentially expressed genes (DEGs) in LTBI and ATB samples, and further screened the top-20 DEGs which might provide a potential panel for differentiation of HC, LTBI, and ATB. (2) We classified all the DEGs into six expression patterns, screened the top-20 genes in each pattern, and mainly focused on those highly expressed in LTBI and ATB. (3) Some Mycobacterium tuberculosis (Mtb) RNAs were only enriched in the exosomes of LTBI samples. (4) Pathway and function analysis further indicated down-regulated signaling pathways/immune response and up-regulated apoptosis/necrosis. Our findings indicate the selective packaging of RNA cargoes into exosomes under different stages of Mtb infection, while facilitating the development of potential targets for the diagnosis, prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- Lingna Lv
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical UniversityBeijing, China
| | - Cuidan Li
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China.,University of Chinese Academy of SciencesBeijing, China
| | - Xiuli Zhang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China.,University of Chinese Academy of SciencesBeijing, China
| | - Nan Ding
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Tianshu Cao
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Xinmiao Jia
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China.,University of Chinese Academy of SciencesBeijing, China
| | - Jinghui Wang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical UniversityBeijing, China
| | - Liping Pan
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical UniversityBeijing, China
| | - Hongyan Jia
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical UniversityBeijing, China
| | - Zihui Li
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical UniversityBeijing, China
| | - Ju Zhang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Fei Chen
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China.,University of Chinese Academy of SciencesBeijing, China.,Collaborative Innovation Center for Genetics and DevelopmentShanghai, China.,Sino-Danish College, University of Chinese Academy of SciencesBeijing, China
| | - Zongde Zhang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
17
|
Abstract
Uveal melanoma (UM), a rare cancer of the eye, is distinct from cutaneous melanoma by its etiology, the mutation frequency and profile, and its clinical behavior including resistance to targeted therapy and immune checkpoint blockers. Primary disease is efficiently controlled by surgery or radiation therapy, but about half of UMs develop distant metastasis mostly to the liver. Survival of patients with metastasis is below 1 year and has not improved in decades. Recent years have brought a deep understanding of UM biology characterized by initiating mutations in the G proteins GNAQ and GNA11. Cytogenetic alterations, in particular monosomy of chromosome 3 and amplification of the long arm of chromosome 8, and mutation of the BRCA1-associated protein 1, BAP1, a tumor suppressor gene, or the splicing factor SF3B1 determine UM metastasis. Cytogenetic and molecular profiling allow for a very precise prognostication that is still not matched by efficacious adjuvant therapies. G protein signaling has been shown to activate the YAP/TAZ pathway independent of HIPPO, and conventional signaling via the mitogen-activated kinase pathway probably also contributes to UM development and progression. Several lines of evidence indicate that inflammation and macrophages play a pro-tumor role in UM and in its hepatic metastases. UM cells benefit from the immune privilege in the eye and may adopt several mechanisms involved in this privilege for tumor escape that act even after leaving the niche. Here, we review the current knowledge of the biology of UM and discuss recent approaches to UM treatment.
Collapse
Affiliation(s)
- Adriana Amaro
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy
| | - Rosaria Gangemi
- Laboratory of Biotherapies, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Francesca Piaggio
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy
| | - Giovanna Angelini
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy
| | - Gaia Barisione
- Laboratory of Biotherapies, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Silvano Ferrini
- Laboratory of Biotherapies, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Ulrich Pfeffer
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
18
|
Steinbichler TB, Dudás J, Riechelmann H, Skvortsova II. The role of exosomes in cancer metastasis. Semin Cancer Biol 2017; 44:170-181. [PMID: 28215970 DOI: 10.1016/j.semcancer.2017.02.006] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022]
Abstract
Exosomes are small membrane vesicles with a size ranging from 40 to 100nm. They can serve as functional mediators in cell interaction leading to cancer metastasis. Metastasis is a complex multistep process of cancer cell invasion, survival in blood vessels, attachment to and colonization of the host organ. Exosomes influence every step of this cascade and can be targeted by oncological treatment. This review highlights the role of exosomes in the various steps of the metastatic cascade and how exosome dependent pathways can be targeted as therapeutic approach or used for liquid biopsies.
Collapse
Affiliation(s)
| | - József Dudás
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|