1
|
Katayama Y, Yamada T, Tanimura K, Kawachi H, Ishida M, Matsui Y, Hirai S, Nakamura R, Morimoto K, Furuya N, Arai S, Goto Y, Sakata Y, Nishino K, Tsuchiya M, Tamiya A, Saito G, Muto S, Takeda T, Date K, Fujisaka Y, Watanabe S, Fujimoto D, Uehara H, Horinaka M, Sakai T, Yano S, Tokuda S, Takayama K. YAP Regulates HER3 Signaling-Driven Adaptive Resistance to RET Inhibitors in RET-Aberrant Cancers. Clin Cancer Res 2025; 31:1127-1141. [PMID: 39495173 DOI: 10.1158/1078-0432.ccr-24-1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
PURPOSE Rearranged during transfection (RET) aberrations represent a targetable oncogene in several tumor types, with RET inhibitors displaying marked efficacy. However, some patients with RET-aberrant cancer are insensitive to RET tyrosine kinase inhibitors (TKI). Recently, drug-tolerant mechanisms have attracted attention as targets for initial therapies to overcome drug resistance. The underlying mechanisms of drug-tolerant cell emergence treated with RET-TKIs derived from RET-aberrant cancer cells remain unknown. This study investigated the role of YAP-mediated HER3 signaling in the underlying mechanisms of adaptive resistance to RET-TKIs in RET-aberrant cancer cells. EXPERIMENTAL DESIGN Four RET-aberrant cancer cell lines were used to assess sensitivity to the RET-TKIs selpercatinib and pralsetinib and to elucidate the molecular mechanisms underlying adaptive resistance using RNA sequencing, phospho-receptor tyrosine kinase antibody arrays, chromatin immunoprecipitation assay, and luciferase reporter assays. Clinical specimens from patients with RET fusion-positive lung cancer were analyzed for pretreatment YAP expression and correlated with treatment outcomes. RESULTS In high YAP-expressing RET-aberrant cancer cells, YAP-mediated HER3 signaling activation maintained cell survival and induced the emergence of cells tolerant to the RET-TKIs selpercatinib and pralsetinib. The pan-ErBB inhibitor afatinib and YAP/tea domain inhibitors verteporfin and K-975 sensitized YAP-expressing RET-aberrant cancer cells to the RET-TKIs selpercatinib and pralsetinib. Pretreatment YAP expression in clinical specimens obtained from patients with RET fusion-positive lung cancer was associated with poor RET-TKI treatment outcomes. CONCLUSIONS The YAP-HER3 axis is crucial for the survival and adaptive resistance of high YAP-expressing RET-aberrant cancer cells treated with RET-TKIs. Combining YAP/HER3 inhibition with RET-TKIs represents a highly potent strategy for initial treatment. See related commentary by Ortiz-Cuaran and Leonce, p. 958.
Collapse
Affiliation(s)
- Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Tanimura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Kawachi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Ishida
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Matsui
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Soichi Hirai
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryota Nakamura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoki Furuya
- Division of Respiratory Medicine, Department of Internal Medicine, St Marianna University School of Medicine, Kawasaki, Japan
| | - Sachiko Arai
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Yasuhiro Goto
- Department of Respiratory Medicine and Allergies, Fujita Health University, Toyoake, Japan
| | - Yoshihiko Sakata
- Division of Respiratory Medicine, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Michiko Tsuchiya
- Department of Respiratory Medicine, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Akihiro Tamiya
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Go Saito
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Muto
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Koji Date
- Department of Pulmonary Medicine, Kyoto Chubu Medical Center, Nantan, Japan
| | - Yasuhito Fujisaka
- Department of Respiratory Medicine and Thoracic Oncology, Clinical Research Center, Osaka Medical and Pharmaceutical University Hospital, Takatsuki, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Daichi Fujimoto
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Japan
| | - Hisanori Uehara
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seiji Yano
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Department of Respiratory Medicine, Kanazawa Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Guo Y, Wang S, Liu Q, Dong Y, Liu Y. St-N, a novel alkaline derivative of stevioside, reverses docetaxel resistance by targeting lysosomes in vitro and in vivo. PLoS One 2024; 19:e0316268. [PMID: 39729512 DOI: 10.1371/journal.pone.0316268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/08/2024] [Indexed: 12/29/2024] Open
Abstract
Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group. In this study, we found that docetaxel (Doc)-resistant prostate cancer (PCa) cells were sensitive to St-N. Mechanistically, the alkaline characteristic of St-N led to targeting lysosomes, as evidenced by lysosomal swelling and rupture through transmission electron microscopy and Lyso-tracker Red staining. St-N destabilized lysosomal membrane by impairing lysosomal membrane proteins and acid sphingomyelinase. As a result, St-N caused cathepsins to release from the lysosomes into the cytosol, eventually triggering apoptotic and necrotic cell death. Meanwhile, the cytoprotective role of lysosomal activation under docetaxel treatment was interrupted by St-N, leading to significant synergistic cytotoxicity of docetaxel and St-N. In docetaxel-resistant PCa homograft mice, St-N significantly inhibited the growth of RM-1/Doc homografts and enhanced the anticancer effects of docetaxel, but did not show significant toxicity. Taken together, these findings demonstrated that St-N reversed docetaxel resistance in vitro and in vivo by destabilizing lysosomal membranes to promote cell death, thus providing a strong rationale for applying St-N in docetaxel-resistant PCa.
Collapse
Affiliation(s)
- Yanxia Guo
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shikang Wang
- Department of Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qun Liu
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Dong
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongqing Liu
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
3
|
Lamb HO, Benfield AH, Henriques ST. Peptides as innovative strategies to combat drug resistance in cancer therapy. Drug Discov Today 2024; 29:104206. [PMID: 39395530 DOI: 10.1016/j.drudis.2024.104206] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Drug resistance is the leading cause of treatment failure in patients with cancer. Thus, innovative therapeutic strategies are required to overcome this critical challenge and improve patient outcomes. In this review, we examine the potential of peptide-based therapies to combat drug resistance in cancer. We highlight the unique strategies and mechanisms that can be explored by using peptides, including their ability to selectively target tumours, facilitate drug delivery into cancer cells, and inhibit key intracellular proteins that drive cancer progression and resistance. Peptides offer a promising approach to overcoming both intrinsic and adaptative cancer resistance against chemotherapy, targeted therapies, and biologics.
Collapse
Affiliation(s)
- Henry O Lamb
- School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Aurélie H Benfield
- School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Brisbane, QLD 4102, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
4
|
Baykal S, Yuce Z, Ozhan G. Phenotypically plastic drug-resistant chronic myeloid leukaemia cell line displays enhanced cellular dynamics in a zebrafish xenograft model. J Cell Mol Med 2024; 28:e70105. [PMID: 39392217 PMCID: PMC11467800 DOI: 10.1111/jcmm.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Understanding the mechanisms by which cancer cells switch between different adaptive states and evade therapeutic interventions is essential for clinical management. In this study, the in vivo cellular dynamics of a new chronic myeloid leukaemia cell line displaying altered phenotype and resistance to tyrosine kinase inhibitors were investigated in correlation with their parental cells for invasiveness/metastasis, angiogenic potential and population kinetics. We showed that the cells exhibiting drug resistance and plastic phenotype possess an increased capacity for invasion compared to their parental cells, that exposure to imatinib mesylate has the potential to enhance cellular motility and that in a leukaemic cell population, even a minority of plastic cells exhibit improved migratory ability. Furthermore, we show that these plastic cells have angiogenic and extravasation potential. The present study provides significant insights into the cellular dynamics displayed by a TKI-resistant, phenotypically plastic CML cell line, using a zebrafish (Danio rerio) xenograft model.
Collapse
Affiliation(s)
- Seda Baykal
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyGulbahce, UrlaIzmirTurkey
- Izmir Biomedicine and Genome Center (IBG)Dokuz Eylul University Health CampusIzmirİnciraltiTurkey
| | - Zeynep Yuce
- Department of Medical BiologyDokuz Eylul University Medical SchoolIzmirİnciraltiTurkey
| | - Gunes Ozhan
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyGulbahce, UrlaIzmirTurkey
- Izmir Biomedicine and Genome Center (IBG)Dokuz Eylul University Health CampusIzmirİnciraltiTurkey
| |
Collapse
|
5
|
Benfield AH, Vernen F, Young RSE, Nadal-Bufí F, Lamb H, Hammerlindl H, Craik DJ, Schaider H, Lawrence N, Blanksby SJ, Henriques ST. Cyclic tachyplesin I kills proliferative, non-proliferative and drug-resistant melanoma cells without inducing resistance. Pharmacol Res 2024; 207:107298. [PMID: 39032840 DOI: 10.1016/j.phrs.2024.107298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
Acquired drug resistance is the major cause for disease recurrence in cancer patients, and this is particularly true for patients with metastatic melanoma that carry a BRAF V600E mutation. To address this problem, we investigated cyclic membrane-active peptides as an alternative therapeutic modality to kill drug-tolerant and resistant melanoma cells to avoid acquired drug resistance. We selected two stable cyclic peptides (cTI and cGm), previously shown to have anti-melanoma properties, and compared them with dabrafenib, a drug used to treat cancer patients with the BRAF V600E mutation. The peptides act via a fast membrane-permeabilizing mechanism and kill metastatic melanoma cells that are sensitive, tolerant, or resistant to dabrafenib. Melanoma cells do not become resistant to long-term treatment with cTI, nor do they evolve their lipid membrane composition, as measured by lipidomic and proteomic studies. In vivo studies in mice demonstrated that the combination treatment of cTI and dabrafenib resulted in fewer metastases and improved overall survival. Such cyclic membrane-active peptides are thus well suited as templates to design new anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Felicitas Vernen
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Reuben S E Young
- Central Analytical Research Facility and School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ferran Nadal-Bufí
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Henry Lamb
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Heinz Hammerlindl
- Frazer Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Helmut Schaider
- Frazer Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility and School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia; Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
6
|
Perez-Medina M, Lopez-Gonzalez JS, Benito-Lopez JJ, Ávila-Ríos S, Soto-Nava M, Matias-Florentino M, Méndez-Tenorio A, Galicia-Velasco M, Chavez-Dominguez R, Meza-Toledo SE, Aguilar-Cazares D. Transcriptomic Analysis Reveals Early Alterations Associated with Intrinsic Resistance to Targeted Therapy in Lung Adenocarcinoma Cell Lines. Cancers (Basel) 2024; 16:2490. [PMID: 39001552 PMCID: PMC11240825 DOI: 10.3390/cancers16132490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Lung adenocarcinoma is the most prevalent form of lung cancer, and drug resistance poses a significant obstacle in its treatment. This study aimed to investigate the overexpression of long non-coding RNAs (lncRNAs) as a mechanism that promotes intrinsic resistance in tumor cells from the onset of treatment. Drug-tolerant persister (DTP) cells are a subset of cancer cells that survive and proliferate after exposure to therapeutic drugs, making them an essential object of study in cancer treatment. The molecular mechanisms underlying DTP cell survival are not fully understood; however, long non-coding RNAs (lncRNAs) have been proposed to play a crucial role. DTP cells from lung adenocarcinoma cell lines were obtained after single exposure to tyrosine kinase inhibitors (TKIs; erlotinib or osimertinib). After establishing DTP cells, RNA sequencing was performed to investigate the differential expression of the lncRNAs. Some lncRNAs and one mRNA were overexpressed in DTP cells. The clinical relevance of lncRNAs was evaluated in a cohort of patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA). RT-qPCR validated the overexpression of lncRNAs and mRNA in the residual DTP cells and LUAD biopsies. Knockdown of these lncRNAs increases the sensitivity of DTP cells to therapeutic drugs. This study provides an opportunity to investigate the involvement of lncRNAs in the genetic and epigenetic mechanisms that underlie intrinsic resistance. The identified lncRNAs and CD74 mRNA may serve as potential prognostic markers or therapeutic targets to improve the overall survival (OS) of patients with lung cancer.
Collapse
Affiliation(s)
- Mario Perez-Medina
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de Mexico 14080, Mexico; (M.P.-M.); (J.S.L.-G.); (J.J.B.-L.); (M.G.-V.); (R.C.-D.)
- Laboratorio de Quimioterapia Experimental, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de Mexico 14080, Mexico;
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de Mexico 14080, Mexico; (M.P.-M.); (J.S.L.-G.); (J.J.B.-L.); (M.G.-V.); (R.C.-D.)
| | - Jesus J. Benito-Lopez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de Mexico 14080, Mexico; (M.P.-M.); (J.S.L.-G.); (J.J.B.-L.); (M.G.-V.); (R.C.-D.)
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico 14080, Mexico
| | - Santiago Ávila-Ríos
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de Mexico 14080, Mexico; (S.Á.-R.); (M.S.-N.); (M.M.-F.)
| | - Maribel Soto-Nava
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de Mexico 14080, Mexico; (S.Á.-R.); (M.S.-N.); (M.M.-F.)
| | - Margarita Matias-Florentino
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de Mexico 14080, Mexico; (S.Á.-R.); (M.S.-N.); (M.M.-F.)
| | - Alfonso Méndez-Tenorio
- Laboratorio de Biotecnologia y Bioinformatica Genomica, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de Mexico 14080, Mexico;
| | - Miriam Galicia-Velasco
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de Mexico 14080, Mexico; (M.P.-M.); (J.S.L.-G.); (J.J.B.-L.); (M.G.-V.); (R.C.-D.)
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de Mexico 14080, Mexico; (M.P.-M.); (J.S.L.-G.); (J.J.B.-L.); (M.G.-V.); (R.C.-D.)
| | - Sergio E. Meza-Toledo
- Laboratorio de Quimioterapia Experimental, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de Mexico 14080, Mexico;
| | - Dolores Aguilar-Cazares
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de Mexico 14080, Mexico; (M.P.-M.); (J.S.L.-G.); (J.J.B.-L.); (M.G.-V.); (R.C.-D.)
| |
Collapse
|
7
|
Chen YC, Gowda K, Amin S, Schell TD, Sharma AK, Robertson GP. Pharmacological agents targeting drug-tolerant persister cells in cancer. Pharmacol Res 2024; 203:107163. [PMID: 38569982 PMCID: PMC11734664 DOI: 10.1016/j.phrs.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Current cancer therapy can be effective, but the development of drug resistant disease is the usual outcome. These drugs can eliminate most of the tumor burden but often fail to eliminate the rare, "Drug Tolerant Persister" (DTP) cell subpopulations in residual tumors, which can be referred to as "Persister" cells. Therefore, novel therapeutic agents specifically targeting or preventing the development of drug-resistant tumors mediated by the remaining persister cells subpopulations are needed. Since approximately ninety percent of cancer-related deaths occur because of the eventual development of drug resistance, identifying, and dissecting the biology of the persister cells is essential for the creation of drugs to target them. While there remains uncertainty surrounding all the markers identifying DTP cells in the literature, this review summarizes the drugs and therapeutic approaches that are available to target the persister cell subpopulations expressing the cellular markers ATP-binding cassette sub-family B member 5 (ABCB5), CD133, CD271, Lysine-specific histone demethylase 5 (KDM5), and aldehyde dehydrogenase (ALDH). Persister cells expressing these markers were selected as the focus of this review because they have been found on cells surviving following drug treatments that promote recurrent drug resistant cancer and are associated with stem cell-like properties, including self-renewal, differentiation, and resistance to therapy. The limitations and obstacles facing the development of agents targeting these DTP cell subpopulations are detailed, with discussion of potential solutions and current research areas needing further exploration.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Krishne Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Todd D Schell
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Arun K Sharma
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, USA; The Pennsylvania State University Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
8
|
Kim S, Bae H, Kim HS. Dedifferentiated Leiomyosarcoma of the Uterine Corpus with Heterologous Component: Clinicopathological Analysis of Five Consecutive Cases from a Single Institution and Comprehensive Literature Review. Diagnostics (Basel) 2024; 14:160. [PMID: 38248037 PMCID: PMC10814992 DOI: 10.3390/diagnostics14020160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Dedifferentiation is a very rare phenomenon in uterine leiomyosarcoma (LMS). The aim of this study was to comprehensively analyze the clinicopathological characteristics of uterine dedifferentiated LMS (DDLMS). We reviewed electronic medical records and pathology slides from five patients with uterine DDLMS and performed immunostaining. The mean age of the patients was 56 years. Two patients presented with abdominal discomfort, while in three cases the uterine tumors were detected on routine medical examination. The mean size of the tumors was 17.0 cm. Four patients underwent hysterectomy. The initial stages were distributed as IB (2/5), IIIC (2/5), and IVC (1/5). Post-operative concurrent chemoradiation therapy, radiation therapy, and chemotherapy were administered in one, one, and two patients, respectively. Despite post-operative treatment, three patients developed metastatic recurrences in the abdominal and pelvic organs. Recurrence-free survival time ranged between 4 and 30 months. Histologically, the differentiated areas demonstrated the classic morphology of malignant smooth muscle differentiation, whereas the dedifferentiated areas resembled undifferentiated pleomorphic sarcoma and were characterized by large pleomorphic tumor cells admixed with haphazardly arranged atypical cells with marked nuclear pleomorphism. All cases also exhibited heterologous components, including chondrosarcoma (CSA; 3/5) and rhabdomyosarcoma (2/5). In two cases, the heterologous components were initially detected in primary tumors. In three cases, the primary tumors did not exhibit any dedifferentiated or heterologous components. Instead, more than half of the recurrent tumors consisted of heterologous components. Three cases showed a sharp demarcation between the LMS and CSA components, while in two cases the dedifferentiated area imperceptibly merged with the differentiated component. Immunostaining revealed that the dedifferentiated components exhibited a lack of desmin immunoreactivity in three of the four examined cases. A subset of uterine LMS represents various amounts and types of dedifferentiation and heterologous components in both primary and recurrent tumors. Routine recognition of DDLMS and distinction from its mimickers are required for accurate diagnosis and further characterization of these rare tumors.
Collapse
Affiliation(s)
- Suyeon Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Hyunsik Bae
- Pathology Center, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| |
Collapse
|
9
|
Ravindran Menon D, Hammerlindl H, Gimenez G, Hammerlindl S, Zuegner E, Torrano J, Bordag N, Emran AA, Giam M, Denil S, Pavelka N, Tan AC, Sturm RA, Haass NK, Rancati G, Herlyn M, Magnes C, Eccles MR, Fujita M, Schaider H. H3K4me3 remodeling induced acquired resistance through O-GlcNAc transferase. Drug Resist Updat 2023; 71:100993. [PMID: 37639774 PMCID: PMC10719180 DOI: 10.1016/j.drup.2023.100993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
AIMS Drivers of the drug tolerant proliferative persister (DTPP) state have not been well investigated. Histone H3 lysine-4 trimethylation (H3K4me3), an active histone mark, might enable slow cycling drug tolerant persisters (DTP) to regain proliferative capacity. This study aimed to determine H3K4me3 transcriptionally active sites identifying a key regulator of DTPPs. METHODS Deploying a model of adaptive cancer drug tolerance, H3K4me3 ChIP-Seq data of DTPPs guided identification of top transcription factor binding motifs. These suggested involvement of O-linked N-acetylglucosamine transferase (OGT), which was confirmed by metabolomics analysis and biochemical assays. OGT impact on DTPPs and adaptive resistance was explored in vitro and in vivo. RESULTS H3K4me3 remodeling was widespread in CPG island regions and DNA binding motifs associated with O-GlcNAc marked chromatin. Accordingly, we observed an upregulation of OGT, O-GlcNAc and its binding partner TET1 in chronically treated cancer cells. Inhibition of OGT led to loss of H3K4me3 and downregulation of genes contributing to drug resistance. Genetic ablation of OGT prevented acquired drug resistance in in vivo models. Upstream of OGT, we identified AMPK as an actionable target. AMPK activation by acetyl salicylic acid downregulated OGT with similar effects on delaying acquired resistance. CONCLUSION Our findings uncover a fundamental mechanism of adaptive drug resistance that governs cancer cell reprogramming towards acquired drug resistance, a process that can be exploited to improve response duration and patient outcomes.
Collapse
Affiliation(s)
- Dinoop Ravindran Menon
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Dermatology, University of Colorado Denver, Aurora, CO, USA; Department of Medical Oncology, University of Colorado Denver, Aurora, CO, USA
| | - Heinz Hammerlindl
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Pharmaceutical Chemistry, The University of California, San Francisco, San Francisco, CA, USA
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sabrina Hammerlindl
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Pharmaceutical Chemistry, The University of California, San Francisco, San Francisco, CA, USA
| | - Elmar Zuegner
- Joanneum Research Forschungsgesellschaft m.b.H., HEALTH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Joachim Torrano
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Natalie Bordag
- Joanneum Research Forschungsgesellschaft m.b.H., HEALTH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Abdullah Al Emran
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Maybelline Giam
- Institute of Medical Biology, Agency for Science, Technology and Research, Immunos Singapore, Singapore
| | - Simon Denil
- Institute of Medical Biology, Agency for Science, Technology and Research, Immunos Singapore, Singapore
| | - Norman Pavelka
- SIgN, the Singapore Institute for Immunology, Agency for Science, Technology and Research, Immunos Singapore, Singapore
| | - Aik-Choon Tan
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Richard A Sturm
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nikolas K Haass
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Giulia Rancati
- Institute of Medical Biology, Agency for Science, Technology and Research, Immunos Singapore, Singapore
| | | | - Christoph Magnes
- Joanneum Research Forschungsgesellschaft m.b.H., HEALTH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Denver, Aurora, CO, USA; Denver VA Medical Center, Denver, CO, USA; Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO, USA
| | - Helmut Schaider
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Dermatology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.
| |
Collapse
|
10
|
Song X, Lan Y, Zheng X, Zhu Q, Liao X, Liu K, Zhang W, Peng Q, Zhu Y, Zhao L, Chen X, Shu Y, Yang K, Hu J. Targeting drug-tolerant cells: A promising strategy for overcoming acquired drug resistance in cancer cells. MedComm (Beijing) 2023; 4:e342. [PMID: 37638338 PMCID: PMC10449058 DOI: 10.1002/mco2.342] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Drug resistance remains the greatest challenge in improving outcomes for cancer patients who receive chemotherapy and targeted therapy. Surmounting evidence suggests that a subpopulation of cancer cells could escape intense selective drug treatment by entering a drug-tolerant state without genetic variations. These drug-tolerant cells (DTCs) are characterized with a slow proliferation rate and a reversible phenotype. They reside in the tumor region and may serve as a reservoir for resistant phenotypes. The survival of DTCs is regulated by epigenetic modifications, transcriptional regulation, mRNA translation remodeling, metabolic changes, antiapoptosis, interactions with the tumor microenvironment, and activation of signaling pathways. Thus, targeting the regulators of DTCs opens a new avenue for the treatment of therapy-resistant tumors. In this review, we first provide an overview of common characteristics of DTCs and the regulating networks in DTCs development. We also discuss the potential therapeutic opportunities to target DTCs. Last, we discuss the current challenges and prospects of the DTC-targeting approach to overcome acquired drug resistance. Reviewing the latest developments in DTC research could be essential in discovering of methods to eliminate DTCs, which may represent a novel therapeutic strategy for preventing drug resistance in the future.
Collapse
Affiliation(s)
- Xiaohai Song
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Lan
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiuli Zheng
- Department of RadiologyHuaxi MR Research Center (HMRRC) and Critical Care MedicinePrecision Medicine Center, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Qianyu Zhu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xuliang Liao
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Kai Liu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Weihan Zhang
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - QiangBo Peng
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yunfeng Zhu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Linyong Zhao
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiaolong Chen
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Shu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Kun Yang
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jiankun Hu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
11
|
Masud MA, Kim JY, Kim E. Modeling the effect of acquired resistance on cancer therapy outcomes. Comput Biol Med 2023; 162:107035. [PMID: 37276754 DOI: 10.1016/j.compbiomed.2023.107035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023]
Abstract
Adaptive therapy (AT) is an evolution-based treatment strategy that exploits cell-cell competition. Acquired resistance can change the competitive nature of cancer cells in a tumor, impacting AT outcomes. We aimed to determine if adaptive therapy can still be effective with cell's acquiring resistance. We developed an agent-based model for spatial tumor growth considering three different types of acquired resistance: random genetic mutations during cell division, drug-induced reversible (plastic) phenotypic changes, and drug-induced irreversible phenotypic changes. These three resistance mechanisms lead to different spatial distributions of resistant cells. To quantify the spatial distribution, we propose an extension of Ripley's K-function, Sampled Ripley's K-function (SRKF), which calculates the non-randomness of the resistance distribution over the tumor domain. Our model predicts that the emergent spatial distribution of resistance can determine the time to progression under both adaptive and continuous therapy (CT). Notably, a high rate of random genetic mutations leads to quicker progression under AT than CT due to the emergence of many small clumps of resistant cells. Drug-induced phenotypic changes accelerate tumor progression irrespective of the treatment strategy. Low-rate switching to a sensitive state reduces the benefits of AT compared to CT. Furthermore, we also demonstrated that drug-induced resistance necessitates aggressive treatment under CT, regardless of the presence of cancer-associated fibroblasts. However, there is an optimal dose that can most effectively delay tumor relapse under AT by suppressing resistance. In conclusion, this study demonstrates that diverse resistance mechanisms can shape the distribution of resistance and thus determine the efficacy of adaptive therapy.
Collapse
Affiliation(s)
- M A Masud
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Eunjung Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.
| |
Collapse
|
12
|
Liang XW, Liu B, Chen JC, Cao Z, Chu FR, Lin X, Wang SZ, Wu JC. Characteristics and molecular mechanism of drug-tolerant cells in cancer: a review. Front Oncol 2023; 13:1177466. [PMID: 37483492 PMCID: PMC10360399 DOI: 10.3389/fonc.2023.1177466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Drug resistance in tumours has seriously hindered the therapeutic effect. Tumour drug resistance is divided into primary resistance and acquired resistance, and the recent study has found that a significant proportion of cancer cells can acquire stable drug resistance from scratch. This group of cells first enters the drug tolerance state (DT state) under drug pressure, and gradually acquires stable drug resistance through adaptive mutations in this state. Although the specific mechanisms underlying the formation of drug tolerant cells (DTCs) remain unclear, various proteins and signalling pathways have been identified as being involved in the formation of DTCs. In the current review, we summarize the characteristics, molecular mechanisms and therapeutic strategies of DTCs in detail.
Collapse
Affiliation(s)
- Xian-Wen Liang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Bing- Liu
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jia-Cheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zhi Cao
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Feng-ran Chu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiong Lin
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Sheng-Zhong Wang
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jin-Cai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
13
|
Masud MA, Kim JY, Kim E. Effective dose window for containing tumor burden under tolerable level. NPJ Syst Biol Appl 2023; 9:17. [PMID: 37221258 DOI: 10.1038/s41540-023-00279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
A maximum-tolerated dose (MTD) reduces the drug-sensitive cell population, though it may result in the competitive release of drug resistance. Alternative treatment strategies such as adaptive therapy (AT) or dose modulation aim to impose competitive stress on drug-resistant cell populations by maintaining a sufficient number of drug-sensitive cells. However, given the heterogeneous treatment response and tolerable tumor burden level of individual patients, determining an effective dose that can fine-tune competitive stress remains challenging. This study presents a mathematical model-driven approach that determines the plausible existence of an effective dose window (EDW) as a range of doses that conserve sufficient sensitive cells while maintaining the tumor volume below a threshold tolerable tumor volume (TTV). We use a mathematical model that explains intratumor cell competition. Analyzing the model, we derive an EDW determined by TTV and the competitive strength. By applying a fixed endpoint optimal control model, we determine the minimal dose to contain cancer at a TTV. As a proof of concept, we study the existence of EDW for a small cohort of melanoma patients by fitting the model to longitudinal tumor response data. We performed identifiability analysis, and for the patients with uniquely identifiable parameters, we deduced patient-specific EDW and minimal dose. The tumor volume for a patient could be theoretically contained at the TTV either using continuous dose or AT strategy with doses belonging to EDW. Further, we conclude that the lower bound of the EDW approximates the minimum effective dose (MED) for containing tumor volume at the TTV.
Collapse
Affiliation(s)
- M A Masud
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eunjung Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea.
| |
Collapse
|
14
|
Geller C, Maddela J, Tuplano R, Runa F, Adamian Y, Güth R, Ortiz Soto G, Tomaneng L, Cantor J, Kelber JA. Fibronectin, DHPS and SLC3A2 Signaling Cooperate to Control Tumor Spheroid Growth, Subcellular eIF5A1/2 Distribution and CDK4/6 Inhibitor Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536765. [PMID: 37090582 PMCID: PMC10120696 DOI: 10.1101/2023.04.13.536765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Extracellular matrix (ECM) protein expression/deposition within and stiffening of the breast cancer microenvironment facilitates disease progression and correlates with poor patient survival. However, the mechanisms by which ECM components control tumorigenic behaviors and responses to therapeutic intervention remain poorly understood. Fibronectin (FN) is a major ECM protein controlling multiple processes. In this regard, we previously reported that DHPS-dependent hypusination of eIF5A1/2 is necessary for fibronectin-mediated breast cancer metastasis and epithelial to mesenchymal transition (EMT). Here, we explored the clinical significance of an interactome generated using hypusination pathway components and markers of intratumoral heterogeneity. Solute carrier 3A2 (SLC3A2 or CD98hc) stood out as an indicator of poor overall survival among patients with basal-like breast cancers that express elevated levels of DHPS. We subsequently discovered that blockade of DHPS or SLC3A2 reduced triple negative breast cancer (TNBC) spheroid growth. Interestingly, spheroids stimulated with exogenous fibronectin were less sensitive to inhibition of either DHPS or SLC3A2 - an effect that could be abrogated by dual DHPS/SLC3A2 blockade. We further discovered that a subset of TNBC cells responded to fibronectin by increasing cytoplasmic localization of eIF5A1/2. Notably, these fibronectin-induced subcellular localization phenotypes correlated with a G0/G1 cell cycle arrest. Fibronectin-treated TNBC cells responded to dual DHPS/SLC3A2 blockade by shifting eIF5A1/2 localization back to a nucleus-dominant state, suppressing proliferation and further arresting cells in the G2/M phase of the cell cycle. Finally, we observed that dual DHPS/SLC3A2 inhibition increased the sensitivity of both Rb-negative and -positive TNBC cells to the CDK4/6 inhibitor palbociclib. Taken together, these data identify a previously unrecognized mechanism through which extracellular fibronectin controls cancer cell tumorigenicity by modulating subcellular eIF5A1/2 localization and provides prognostic/therapeutic utility for targeting the cooperative DHPS/SLC3A2 signaling axis to improve breast cancer treatment responses.
Collapse
Affiliation(s)
- Cameron Geller
- Department of Biology, California State University Northridge, Northridge, CA & Department of Biology, Baylor University, Waco, TX
| | - Joanna Maddela
- Department of Biology, California State University Northridge, Northridge, CA & Department of Biology, Baylor University, Waco, TX
| | - Ranel Tuplano
- Department of Biology, California State University Northridge, Northridge, CA & Department of Biology, Baylor University, Waco, TX
| | - Farhana Runa
- Department of Biology, California State University Northridge, Northridge, CA & Department of Biology, Baylor University, Waco, TX
| | - Yvess Adamian
- Department of Biology, California State University Northridge, Northridge, CA & Department of Biology, Baylor University, Waco, TX
| | - Robert Güth
- Department of Biology, California State University Northridge, Northridge, CA & Department of Biology, Baylor University, Waco, TX
| | - Gabriela Ortiz Soto
- Department of Biology, California State University Northridge, Northridge, CA & Department of Biology, Baylor University, Waco, TX
| | - Luke Tomaneng
- Department of Biology, California State University Northridge, Northridge, CA & Department of Biology, Baylor University, Waco, TX
| | - Joseph Cantor
- BD Biosciences, 1077 N Torrey Pines Rd, La Jolla, CA
| | - Jonathan A. Kelber
- Department of Biology, California State University Northridge, Northridge, CA & Department of Biology, Baylor University, Waco, TX
| |
Collapse
|
15
|
Yu T, Jadhav AC, Xu J, Harris AL, Nair V, Huang WE. Metabolic Reprogramming in Colon Cancer Cells Persistently Infected with Newcastle Disease Virus. Cancers (Basel) 2023; 15:811. [PMID: 36765769 PMCID: PMC9913782 DOI: 10.3390/cancers15030811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Newcastle disease virus (NDV) is an oncolytic agent against various types of mammalian cancers. As with all cancer therapies, the development of cancer resistance, both innate and acquired, is becoming a challenge. In this study, we investigated persistently NDV-infected Caco-2 colon cancer cells, designated as virus-resistant (VR) Caco-2 cells, which were then able to resist NDV-mediated oncolysis. We applied single-cell Raman spectroscopy, combined with deuterium isotope probing (Raman-DIP) techniques, to investigate the metabolic adaptations and dynamics in VR Caco-2 cells. A linear discriminant analysis (LDA) model demonstrated excellent performance in differentiating VR Caco-2 from Caco-2 cells at single-cell level. By comparing the metabolic profiles in a time-resolved manner, the de novo synthesis of proteins and lipids was found upregulated, along with decreased DNA synthesis in VR Caco-2. The results suggest that VR Caco-2 cells might reprogram their metabolism and divert energy from proliferation to protein synthesis and lipidic modulation. The ability to identify and characterise single resistant cells among a population of cancer cells would help develop a deeper understanding of the resistance mechanisms and better tactics for developing effective cancer treatment.
Collapse
Affiliation(s)
- Tong Yu
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Archana Chandrabhan Jadhav
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK
- Viral Oncogenesis Group, The Pirbright Institute, Surrey GU24 0NF, UK
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford OX3 9DS, UK
| | - Venugopal Nair
- Viral Oncogenesis Group, The Pirbright Institute, Surrey GU24 0NF, UK
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| |
Collapse
|
16
|
Parab L, Pal S, Dhar R. Transcription factor binding process is the primary driver of noise in gene expression. PLoS Genet 2022; 18:e1010535. [PMID: 36508455 PMCID: PMC9779669 DOI: 10.1371/journal.pgen.1010535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/22/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Noise in expression of individual genes gives rise to variations in activity of cellular pathways and generates heterogeneity in cellular phenotypes. Phenotypic heterogeneity has important implications for antibiotic persistence, mutation penetrance, cancer growth and therapy resistance. Specific molecular features such as the presence of the TATA box sequence and the promoter nucleosome occupancy have been associated with noise. However, the relative importance of these features in noise regulation is unclear and how well these features can predict noise has not yet been assessed. Here through an integrated statistical model of gene expression noise in yeast we found that the number of regulating transcription factors (TFs) of a gene was a key predictor of noise, whereas presence of the TATA box and the promoter nucleosome occupancy had poor predictive power. With an increase in the number of regulatory TFs, there was a rise in the number of cooperatively binding TFs. In addition, an increased number of regulatory TFs meant more overlaps in TF binding sites, resulting in competition between TFs for binding to the same region of the promoter. Through modeling of TF binding to promoter and application of stochastic simulations, we demonstrated that competition and cooperation among TFs could increase noise. Thus, our work uncovers a process of noise regulation that arises out of the dynamics of gene regulation and is not dependent on any specific transcription factor or specific promoter sequence.
Collapse
Affiliation(s)
- Lavisha Parab
- Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, Kharagpur, West Bengal, India
- Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| | - Sampriti Pal
- Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, Kharagpur, West Bengal, India
| | - Riddhiman Dhar
- Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, Kharagpur, West Bengal, India
- * E-mail:
| |
Collapse
|
17
|
Ogden S, Carys K, Ahmed I, Bruce J, Sharrocks AD. Regulatory chromatin rewiring promotes metabolic switching during adaptation to oncogenic receptor tyrosine kinase inhibition. Oncogene 2022; 41:4808-4822. [PMID: 36153371 PMCID: PMC9586873 DOI: 10.1038/s41388-022-02465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
Abstract
Oesophageal adenocarcinoma (OAC) patients show poor survival rates and there are few targeted molecular therapies available. However, components of the receptor tyrosine kinase (RTK) driven pathways are commonly mutated in OAC, typified by high frequency amplifications of the RTK ERBB2. ERBB2 can be therapeutically targeted, but this has limited clinical benefit due to the acquisition of drug resistance. Here we examined how OAC cells adapt to ERBB2 inhibition as they transition to a drug resistant state. ERBB2 inhibition triggers widespread remodelling of the accessible chromatin landscape and the underlying gene regulatory networks. The transcriptional regulators HNF4A and PPARGC1A play a key role in this network rewiring. Initially, inhibition of cell cycle associated gene expression programmes is observed, with compensatory increases in the programmes driving changes in metabolic activity. Both PPARGC1A and HNF4A are required for the acquisition of resistance to ERBB2 inhibition and PPARGC1A is instrumental in promoting a switch to dependency on oxidative phosphorylation. Our work therefore reveals the molecular pathways that support the acquisition of a resistant state and points to potential new therapeutic strategies to combat cellular adaptation and ensuing drug resistance.
Collapse
Affiliation(s)
- Samuel Ogden
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Kashmala Carys
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Ibrahim Ahmed
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Jason Bruce
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Andrew D Sharrocks
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
18
|
Bladder cancer cells shift rapidly and spontaneously to cisplatin-resistant oxidative phosphorylation that is trackable in real time. Sci Rep 2022; 12:5518. [PMID: 35365706 PMCID: PMC8976067 DOI: 10.1038/s41598-022-09438-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/23/2022] [Indexed: 12/26/2022] Open
Abstract
Genetic mutations have long been recognized as drivers of cancer drug resistance, but recent work has defined additional non-genetic mechanisms of plasticity, wherein cancer cells assume a drug resistant phenotype marked by altered epigenetic and transcriptional states. Currently, little is known about the real-time, dynamic nature of this phenotypic shift. Using a bladder cancer model of nongenetic plasticity, we discovered that rapid transition to drug resistance entails upregulation of mitochondrial gene expression and a corresponding metabolic shift towards the tricarboxylic acid cycle and oxidative phosphorylation. Based on this distinction, we were able to track cancer cell metabolic profiles in real time using fluorescence lifetime microscopy (FLIM). We observed single cells transitioning spontaneously to an oxidative phosphorylation state over hours to days, a trend that intensified with exposure to cisplatin chemotherapy. Conversely, pharmacological inhibition of oxidative phosphorylation significantly reversed the FLIM metabolic signature and reduced cisplatin resistance. These rapid, spontaneous metabolic shifts offer a new means of tracking nongenetic cancer plasticity and forestalling the emergence of drug resistance.
Collapse
|
19
|
Kulkarni P, Bhattacharya S, Achuthan S, Behal A, Jolly MK, Kotnala S, Mohanty A, Rangarajan G, Salgia R, Uversky V. Intrinsically Disordered Proteins: Critical Components of the Wetware. Chem Rev 2022; 122:6614-6633. [PMID: 35170314 PMCID: PMC9250291 DOI: 10.1021/acs.chemrev.1c00848] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite the wealth of knowledge gained about intrinsically disordered proteins (IDPs) since their discovery, there are several aspects that remain unexplored and, hence, poorly understood. A living cell is a complex adaptive system that can be described as a wetware─a metaphor used to describe the cell as a computer comprising both hardware and software and attuned to logic gates─capable of "making" decisions. In this focused Review, we discuss how IDPs, as critical components of the wetware, influence cell-fate decisions by wiring protein interaction networks to keep them minimally frustrated. Because IDPs lie between order and chaos, we explore the possibility that they can be modeled as attractors. Further, we discuss how the conformational dynamics of IDPs manifests itself as conformational noise, which can potentially amplify transcriptional noise to stochastically switch cellular phenotypes. Finally, we explore the potential role of IDPs in prebiotic evolution, in forming proteinaceous membrane-less organelles, in the origin of multicellularity, and in protein conformation-based transgenerational inheritance of acquired characteristics. Together, these ideas provide a new conceptual framework to discern how IDPs may perform critical biological functions despite their lack of structure.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Supriyo Bhattacharya
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, USA
| | - Srisairam Achuthan
- Division of Research Informatics, Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Amita Behal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sourabh Kotnala
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
- Center for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Vladimir Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, Moscow region 141700, Russia
| |
Collapse
|
20
|
Protein conformational dynamics and phenotypic switching. Biophys Rev 2021; 13:1127-1138. [PMID: 35059032 PMCID: PMC8724335 DOI: 10.1007/s12551-021-00858-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure but exist as conformational ensembles. Because of their structural plasticity, they can interact with multiple partners. The protein interactions between IDPs and their partners form scale-free protein interaction networks (PINs) that facilitate information flow in the cell. Because of their plasticity, IDPs typically occupy hub positions in cellular PINs. Furthermore, their conformational dynamics and propensity for post-translational modifications contribute to "conformational" noise which is distinct from the well-recognized transcriptional noise. Therefore, upregulation of IDPs in response to a specific input, such as stress, contributes to increased noise and, hence, an increase in stochastic, "promiscuous" interactions. These interactions lead to activation of latent pathways or can induce "rewiring" of the PIN to yield an optimal output underscoring the critical role of IDPs in regulating information flow. We have used PAGE4, a highly intrinsically disordered stress-response protein as a paradigm. Employing a variety of experimental and computational techniques, we have elucidated the role of PAGE4 in phenotypic switching of prostate cancer cells at a systems level. These cumulative studies over the past decade provide a conceptual framework to better understand how IDP conformational dynamics and conformational noise might facilitate cellular decision-making.
Collapse
|
21
|
Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance. Cancers (Basel) 2021; 13:cancers13174363. [PMID: 34503172 PMCID: PMC8430856 DOI: 10.3390/cancers13174363] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Despite recent therapeutic advances against cancer, many patients do not respond well or respond poorly, to treatment and develop resistance to more than one anti-cancer drug, a term called multi-drug resistance (MDR). One of the main factors that contribute to MDR is the deregulation of apoptosis or programmed cell death. Herein, we describe the major apoptotic pathways and discuss how pro-apoptotic and anti-apoptotic proteins are modified in cancer cells to convey drug resistance. We also focus on our current understanding related to the interactions between survival and cell death pathways, as well as on mechanisms underlying the balance shift towards cancer cell growth and drug resistance. Moreover, we highlight the role of the tumor microenvironment components in blocking apoptosis in MDR tumors, and we discuss the significance and potential exploitation of epigenetic modifications for cancer treatment. Finally, we summarize the current and future therapeutic approaches for overcoming MDR. Abstract The ability of tumor cells to evade apoptosis is established as one of the hallmarks of cancer. The deregulation of apoptotic pathways conveys a survival advantage enabling cancer cells to develop multi-drug resistance (MDR), a complex tumor phenotype referring to concurrent resistance toward agents with different function and/or structure. Proteins implicated in the intrinsic pathway of apoptosis, including the Bcl-2 superfamily and Inhibitors of Apoptosis (IAP) family members, as well as their regulator, tumor suppressor p53, have been implicated in the development of MDR in many cancer types. The PI3K/AKT pathway is pivotal in promoting survival and proliferation and is often overactive in MDR tumors. In addition, the tumor microenvironment, particularly factors secreted by cancer-associated fibroblasts, can inhibit apoptosis in cancer cells and reduce the effectiveness of different anti-cancer drugs. In this review, we describe the main alterations that occur in apoptosis-and related pathways to promote MDR. We also summarize the main therapeutic approaches against resistant tumors, including agents targeting Bcl-2 family members, small molecule inhibitors against IAPs or AKT and agents of natural origin that may be used as monotherapy or in combination with conventional therapeutics. Finally, we highlight the potential of therapeutic exploitation of epigenetic modifications to reverse the MDR phenotype.
Collapse
|
22
|
Leonce C, Saintigny P, Ortiz-Cuaran S. Cell-intrinsic mechanisms of drug tolerance to systemic therapies in cancer. Mol Cancer Res 2021; 20:11-29. [PMID: 34389691 DOI: 10.1158/1541-7786.mcr-21-0038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
In cancer patients with metastatic disease, the rate of complete tumor response to systemic therapies is low, and residual lesions persist in the majority of patients due to early molecular adaptation in cancer cells. A growing body of evidence suggests that a subpopulation of drug-tolerant « persister » cells - a reversible phenotype characterized by reduced drug sensitivity and decreased cell proliferation - maintains residual disease and may serve as a reservoir for resistant phenotypes. The survival of these residual tumor cells can be caused by reactivation of specific signaling pathways, phenotypic plasticity (i.e., transdifferentiation), epigenetic or metabolic reprogramming, downregulation of apoptosis as well as transcriptional remodeling. In this review, we discuss the molecular mechanisms that enable adaptive survival in drug-tolerant cells. We describe the main characteristics and dynamic nature of this persistent state, and highlight the current therapeutic strategies that may be used to interfere with the establishment of drug-tolerant cells, as an alternative to improve objective response to systemic therapies and delay the emergence of resistance to improve long-term survival.
Collapse
Affiliation(s)
- Camille Leonce
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon
| | - Pierre Saintigny
- Department of Medical Oncology, Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon. Department of Medical Oncology, Centre Léon Bérard
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon
| |
Collapse
|
23
|
Li L, Xu F, Xie P, Yuan L, Zhou M. PTPRT Could Be a Treatment Predictive and Prognostic Biomarker for Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3301402. [PMID: 34414233 PMCID: PMC8370817 DOI: 10.1155/2021/3301402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022]
Abstract
The role of PTPRT in breast cancer was not comprehensively explored and well analyzed. Our study comprehensively searched available databases to analyze the clinical role of PTPRT in breast cancer. We found PTPRT was an antioncogene and could be used to distinguish different stages, age groups, molecular types, and grades for breast cancer. PTPRT might be primary resistance biomarkers for taxane, anthracycline, and ixabepilone but not be acquired resistance biomarkers. Higher PTPRT expression levels were associated with longer overall survival and recurrence-free survival. PTPRT was negatively associated with Ki67 and CDK4/6 but positively associated with BCL-2. PTPRT might be associated with cell cycle and microtubule, and tumor infiltration in B cell and macrophage cell. PTPRT could predict chemotherapy effectiveness and prognosis for breast cancer patients. PTPRT might inhibit tumor growth via disrupting the microtubule dynamics and cell cycle in breast cancer.
Collapse
Affiliation(s)
- Lun Li
- Department of General Surgery, Xiangya Second Hospital, Central South University, No. 139 Middle People Road, Changsha, Hunan 410011, China
| | - Feng Xu
- Department of General Surgery, Xiangya Second Hospital, Central South University, No. 139 Middle People Road, Changsha, Hunan 410011, China
| | - Pingfang Xie
- Department of General Surgery, Xiangya Second Hospital, Central South University, No. 139 Middle People Road, Changsha, Hunan 410011, China
| | - Liqin Yuan
- Department of General Surgery, Xiangya Second Hospital, Central South University, No. 139 Middle People Road, Changsha, Hunan 410011, China
| | - Meirong Zhou
- Department of General Surgery, Xiangya Second Hospital, Central South University, No. 139 Middle People Road, Changsha, Hunan 410011, China
| |
Collapse
|
24
|
Xie X, Wu Q, Zhang K, Liu Y, Zhang N, Chen Q, Wang L, Li W, Zhang J, Liu Y. O-GlcNAc modification regulates MTA1 transcriptional activity during breast cancer cell genotoxic adaptation. Biochim Biophys Acta Gen Subj 2021; 1865:129930. [PMID: 34019948 DOI: 10.1016/j.bbagen.2021.129930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chromatin modifier metastasis-associated protein 1 (MTA1), closely associated with tumor angiogenesis in breast cancer, plays an important role in gene expression and cancer cell behavior. Recently, an association between O-GlcNAc transferase (OGT) and MTA1 was identified by mass spectroscopy. However, the potential relationship between MTA1 and O-GlcNAc modification has not yet explored. METHODS In the current study, the role of MTA1 and its O-GlcNAc modification in breast cancer cell genotoxic adaptation was investigated through quantitative proteomics, chromatin immunoprecipitation followed by sequencing (ChIP-seq), transcriptome analysis, and loss- and gain-of-function experiments. RESULTS We demonstrate that the O-GlcNAc modification promotes MTA1 to interaction with chromatin and thus changes the expression of target genes, contributing to breast cancer cell genotoxic adaptation. MTA1 is modified with O-GlcNAc residues at serine (S) residues S237/S241/S246 in adriamycin-adaptive breast cancer cells, and this modification improves the genome-wide interactions of MTA1 with gene promotor regions by enhancing its association with nucleosome remodeling and histone deacetylation (NuRD) complex. Further, O-GlcNAc modification modulates MTA1 chromatin binding, influencing the specific transcriptional regulation of genes involved in the adaptation of breast cancer cells to genotoxic stress. CONCLUSIONS Our findings reveal a previously unrecognized role for O-GlcNAc-modified MTA1 in transcriptional regulation and suggest that the O-GlcNAc modification is a key to the molecular regulation of chemoresistance in breast cancers.
Collapse
Affiliation(s)
- Xueqin Xie
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Qiutong Wu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Keren Zhang
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Yimin Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Nana Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Qiushi Chen
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Lingyan Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Wenli Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Jianing Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China..
| | - Yubo Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China..
| |
Collapse
|
25
|
Celora GL, Byrne HM, Zois CE, Kevrekidis PG. Phenotypic variation modulates the growth dynamics and response to radiotherapy of solid tumours under normoxia and hypoxia. J Theor Biol 2021; 527:110792. [PMID: 34087269 DOI: 10.1016/j.jtbi.2021.110792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 12/24/2022]
Abstract
In cancer, treatment failure and disease recurrence have been associated with small subpopulations of cancer cells with a stem-like phenotype. In this paper, we develop and investigate a phenotype-structured model of solid tumour growth in which cells are structured by a stemness level, which varies continuously between stem-like and terminally differentiated behaviours. Cell evolution is driven by proliferation and death, as well as advection and diffusion with respect to the stemness structure variable. Here, the magnitude and sign of the advective flux are allowed to vary with the oxygen level. We use the model to investigate how the environment, in particular oxygen levels, affects the tumour's population dynamics and composition, and its response to radiotherapy. We use a combination of numerical and analytical techniques to quantify how under physiological oxygen levels the cells evolve to a differentiated phenotype and under low oxygen level (i.e., hypoxia) they de-differentiate. Under normoxia, the proportion of cancer stem cells is typically negligible and the tumour may ultimately become extinct whereas under hypoxia cancer stem cells comprise a dominant proportion of the tumour volume, enhancing radio-resistance and favouring the tumour's long-term survival. We then investigate how such phenotypic heterogeneity impacts the tumour's response to treatment with radiotherapy under normoxia and hypoxia. Of particular interest is establishing how the presence of radio-resistant cancer stem cells can facilitate a tumour's regrowth following radiotherapy. We also use the model to show how radiation-induced changes in tumour oxygen levels can give rise to complex re-growth dynamics. For example, transient periods of hypoxia induced by damage to tumour blood vessels may rescue the cancer cell population from extinction and drive secondary regrowth.
Collapse
Affiliation(s)
- Giulia L Celora
- Mathematical Institute, University of Oxford, Oxford, United Kingdom.
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Christos E Zois
- Molecular Oncology Laboratories, Department of Oncology, Oxford University, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; Department of Radiotherapy and Oncology, School of Health, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - P G Kevrekidis
- Department of Mathematics & Statistics, University of Massachusetts, Amherst 01003, USA
| |
Collapse
|
26
|
Singh D, Bocci F, Kulkarni P, Jolly MK. Coupled Feedback Loops Involving PAGE4, EMT and Notch Signaling Can Give Rise to Non-genetic Heterogeneity in Prostate Cancer Cells. ENTROPY (BASEL, SWITZERLAND) 2021; 23:288. [PMID: 33652914 PMCID: PMC7996788 DOI: 10.3390/e23030288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Non-genetic heterogeneity is emerging as a crucial factor underlying therapy resistance in multiple cancers. However, the design principles of regulatory networks underlying non-genetic heterogeneity in cancer remain poorly understood. Here, we investigate the coupled dynamics of feedback loops involving (a) oscillations in androgen receptor (AR) signaling mediated through an intrinsically disordered protein PAGE4, (b) multistability in epithelial-mesenchymal transition (EMT), and c) Notch-Delta-Jagged signaling mediated cell-cell communication, each of which can generate non-genetic heterogeneity through multistability and/or oscillations. Our results show how different coupling strengths between AR and EMT signaling can lead to monostability, bistability, or oscillations in the levels of AR, as well as propagation of oscillations to EMT dynamics. These results reveal the emergent dynamics of coupled oscillatory and multi-stable systems and unravel mechanisms by which non-genetic heterogeneity in AR levels can be generated, which can act as a barrier to most existing therapies for prostate cancer patients.
Collapse
Affiliation(s)
- Divyoj Singh
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA;
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| |
Collapse
|
27
|
Seita A, Nakaoka H, Okura R, Wakamoto Y. Intrinsic growth heterogeneity of mouse leukemia cells underlies differential susceptibility to a growth-inhibiting anticancer drug. PLoS One 2021; 16:e0236534. [PMID: 33524064 PMCID: PMC7850478 DOI: 10.1371/journal.pone.0236534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/14/2021] [Indexed: 11/18/2022] Open
Abstract
Cancer cell populations consist of phenotypically heterogeneous cells. Growing evidence suggests that pre-existing phenotypic differences among cancer cells correlate with differential susceptibility to anticancer drugs and eventually lead to a relapse. Such phenotypic differences can arise not only externally driven by the environmental heterogeneity around individual cells but also internally by the intrinsic fluctuation of cells. However, the quantitative characteristics of intrinsic phenotypic heterogeneity emerging even under constant environments and their relevance to drug susceptibility remain elusive. Here we employed a microfluidic device, mammalian mother machine, for studying the intrinsic heterogeneity of growth dynamics of mouse lymphocytic leukemia cells (L1210) across tens of generations. The generation time of this cancer cell line had a distribution with a long tail and a heritability across generations. We determined that a minority of cell lineages exist in a slow-cycling state for multiple generations. These slow-cycling cell lineages had a higher chance of survival than the fast-cycling lineages under continuous exposure to the anticancer drug Mitomycin C. This result suggests that heritable heterogeneity in cancer cells’ growth in a population influences their susceptibility to anticancer drugs.
Collapse
Affiliation(s)
- Akihisa Seita
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidenori Nakaoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (HN); (YW)
| | - Reiko Okura
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuichi Wakamoto
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Research Center for Complex Systems Biology, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
- * E-mail: (HN); (YW)
| |
Collapse
|
28
|
The Inhibition of CDK8/19 Mediator Kinases Prevents the Development of Resistance to EGFR-Targeting Drugs. Cells 2021; 10:cells10010144. [PMID: 33445730 PMCID: PMC7828184 DOI: 10.3390/cells10010144] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Drug resistance is the main obstacle to achieving cures with both conventional and targeted anticancer drugs. The emergence of acquired drug resistance is initially mediated by non-genetic transcriptional changes, which occur at a much higher frequency than mutations and may involve population-scale transcriptomic adaptation. CDK8/19 kinases, through association with transcriptional Mediator complex, regulate transcriptional reprogramming by co-operating with different signal-responsive transcription factors. Here we tested if CDK8/19 inhibition could prevent adaptation to drugs acting on epidermal growth factor receptor (EGFR/ERBB1/HER1). The development of resistance was analyzed following long-term exposure of BT474 and SKBR3 breast cancer cells to EGFR-targeting small molecules (gefitinib, erlotinib) and of SW48 colon cancer cells to an anti-EGFR monoclonal antibody cetuximab. In all cases, treatment of small cell populations (~105 cells) with a single dose of the drug initially led to growth inhibition that was followed by the resumption of proliferation and development of drug resistance in the adapted populations. However, this adaptation was always prevented by the addition of selective CDK8/19 inhibitors, even though such inhibitors alone had only moderate or no effect on cell growth. These results indicate that combining EGFR-targeting drugs with CDK8/19 inhibitors may delay or prevent the development of tumor resistance to therapy.
Collapse
|
29
|
Guo L, Lee YT, Zhou Y, Huang Y. Targeting epigenetic regulatory machinery to overcome cancer therapy resistance. Semin Cancer Biol 2021; 83:487-502. [PMID: 33421619 PMCID: PMC8257754 DOI: 10.1016/j.semcancer.2020.12.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
Drug resistance, either intrinsic or acquired, represents a major hurdle to achieving optimal therapeutic outcomes during cancer treatment. In addition to acquisition of resistance-conferring genetic mutations, accumulating evidence suggests an intimate involvement of the epigenetic machinery in this process as well. Recent studies have revealed that epigenetic reprogramming, such as altered expression or relocation of DNA/histone modulators accompanied with chromatin structure remodeling, can lead to transcriptional plasticity in tumor cells, thereby driving their transformation towards a persistent state. These "persisters" represent a pool of slow-growing cells that can either re-expand when treatment is discontinued or acquire permanent resistance. Targeting epigenetic reprogramming or plasticity represents a new strategy to prevent the emergence of drug-refractory populations and to enable more consistent clinical responses. With the growing numbers of drugs or drug candidates developed to target epigenetic regulators, more and more epigenetic therapies are under preclinical evaluation, early clinical trials or approved by FDA as single agent or in combination with existing antitumor drugs. In this review, we highlight latest discoveries in the mechanistic understanding of epigenetically-induced drug resistance. In parallel, we discuss the potential of combining epigenetic drugs with existing anticancer regimens as a promising strategy for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Lei Guo
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA; Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Yi-Tsang Lee
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA.
| | - Yun Huang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Quan C, Chen Y, Wang X, Yang D, Wang Q, Huang Y, Petersen RB, Liu X, Zheng L, Li Y, Huang K. Loss of histone lysine methyltransferase EZH2 confers resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Cancer Lett 2020; 495:41-52. [PMID: 32920200 DOI: 10.1016/j.canlet.2020.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 12/31/2022]
Abstract
Tyrosine kinase inhibitor (TKI) treatment is the first-line therapy for non-small cell lung cancer (NSCLC) caused by activating mutations of epidermal growth factor receptor (EGFR). However, acquired resistance to EGFR-TKI occurs almost inevitably. Aberrant activation of proto-oncogene MET has been known to confer EGFR-TKI resistance; however, the mechanisms involved remains unclear. Recent evidence implicates epigenetic heterogeneity as playing roles in cancer drug resistance, whereas links involving epigenetic heterogeneity and MET in NSCLC remain poorly understood. We found that expression of EZH2, a histone methyltransferase, was negatively correlated with MET activation and EGFR-TKI resistance in NSCLC cells and clinical samples, suggesting the potential for EZH2 to be used as a biomarker for EGFR-TKI sensitivity. Knockdown or inhibition of EZH2 up-regulated MET expression and phosphorylation, and elevated proliferation and EGFR-TKI resistance of cells in vitro. Meanwhile, inhibition of MET or PI3K/AKT enhanced EZH2 levels and restored sensitivity to EGFR-TKI. These findings indicate a "MET-AKT-EZH2" feedback loop regulating EGFR-TKI-resistance. Furthermore, combination therapy of PI3K/AKT inhibition and EGFR-TKI, which interrupts the loop, enhanced tumor-suppressive effects in an EGFR-TKI-resistant xenograft model, indicating a potential approach against drug resistance in NSCLC.
Collapse
Affiliation(s)
- Chuntao Quan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomu Wang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yixue Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, 48859, USA
| | - Xinran Liu
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
31
|
Hass R, von der Ohe J, Ungefroren H. The Intimate Relationship Among EMT, MET and TME: A T(ransdifferentiation) E(nhancing) M(ix) to Be Exploited for Therapeutic Purposes. Cancers (Basel) 2020; 12:3674. [PMID: 33297508 PMCID: PMC7762343 DOI: 10.3390/cancers12123674] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Intratumoral heterogeneity is considered the major cause of drug unresponsiveness in cancer and accumulating evidence implicates non-mutational resistance mechanisms rather than genetic mutations in its development. These non-mutational processes are largely driven by phenotypic plasticity, which is defined as the ability of a cell to reprogram and change its identity (phenotype switching). Tumor cell plasticity is characterized by the reactivation of developmental programs that are closely correlated with the acquisition of cancer stem cell properties and an enhanced potential for retrodifferentiation or transdifferentiation. A well-studied mechanism of phenotypic plasticity is the epithelial-mesenchymal transition (EMT). Current evidence suggests a complex interplay between EMT, genetic and epigenetic alterations, and clues from the tumor microenvironment in cell reprogramming. A deeper understanding of the connections between stem cell, epithelial-mesenchymal, and tumor-associated reprogramming events is crucial to develop novel therapies that mitigate cell plasticity and minimize the evolution of tumor heterogeneity, and hence drug resistance. Alternatively, vulnerabilities exposed by tumor cells when residing in a plastic or stem-like state may be exploited therapeutically, i.e., by converting them into less aggressive or even postmitotic cells. Tumor cell plasticity thus presents a new paradigm for understanding a cancer's resistance to therapy and deciphering its underlying mechanisms.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Hendrik Ungefroren
- First Department of Medicine, UKSH, Campus Lübeck, 23538 Lübeck, Germany;
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, UKSH, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
32
|
Qin S, Jiang J, Lu Y, Nice EC, Huang C, Zhang J, He W. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct Target Ther 2020; 5:228. [PMID: 33028808 PMCID: PMC7541492 DOI: 10.1038/s41392-020-00313-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
Resistance to cancer therapy is a major barrier to cancer management. Conventional views have proposed that acquisition of resistance may result from genetic mutations. However, accumulating evidence implicates a key role of non-mutational resistance mechanisms underlying drug tolerance, the latter of which is the focus that will be discussed here. Such non-mutational processes are largely driven by tumor cell plasticity, which renders tumor cells insusceptible to the drug-targeted pathway, thereby facilitating the tumor cell survival and growth. The concept of tumor cell plasticity highlights the significance of re-activation of developmental programs that are closely correlated with epithelial-mesenchymal transition, acquisition properties of cancer stem cells, and trans-differentiation potential during drug exposure. From observations in various cancers, this concept provides an opportunity for investigating the nature of anticancer drug resistance. Over the years, our understanding of the emerging role of phenotype switching in modifying therapeutic response has considerably increased. This expanded knowledge of tumor cell plasticity contributes to developing novel therapeutic strategies or combination therapy regimens using available anticancer drugs, which are likely to improve patient outcomes in clinical practice.
Collapse
Affiliation(s)
- Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, 611137, Chengdu, People's Republic of China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China.
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, People's Republic of China.
| |
Collapse
|
33
|
Dhar R. Role of Mitochondria in Generation of Phenotypic Heterogeneity in Yeast. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Ravindran Menon D, Hammerlindl H, Torrano J, Schaider H, Fujita M. Epigenetics and metabolism at the crossroads of stress-induced plasticity, stemness and therapeutic resistance in cancer. Theranostics 2020; 10:6261-6277. [PMID: 32483452 PMCID: PMC7255038 DOI: 10.7150/thno.42523] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in the treatment of cancers, acquired drug resistance remains a major challenge in cancer management. While earlier studies suggest Darwinian factors driving acquired drug resistance, recent studies point to a more dynamic process involving phenotypic plasticity and tumor heterogeneity in the evolution of acquired drug resistance. Chronic stress after drug treatment induces intrinsic cellular reprogramming and cancer stemness through a slow-cycling persister state, which subsequently drives cancer progression. Both epigenetic and metabolic mechanisms play an important role in this dynamic process. In this review, we discuss how epigenetic and metabolic reprogramming leads to stress-induced phenotypic plasticity and acquired drug resistance, and how the two reprogramming mechanisms crosstalk with each other.
Collapse
|
35
|
Zhai H, Moore D, Jamal-Hanjani M. Inactivation of RB1 and histological transformation in EGFR-mutant lung adenocarcinoma. Ann Oncol 2020; 31:169-170. [PMID: 31959334 DOI: 10.1016/j.annonc.2019.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/12/2023] Open
Affiliation(s)
- H Zhai
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - D Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Department of Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - M Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
36
|
Lotsberg ML, Wnuk-Lipinska K, Terry S, Tan TZ, Lu N, Trachsel-Moncho L, Røsland GV, Siraji MI, Hellesøy M, Rayford A, Jacobsen K, Ditzel HJ, Vintermyr OK, Bivona TG, Minna J, Brekken RA, Baguley B, Micklem D, Akslen LA, Gausdal G, Simonsen A, Thiery JP, Chouaib S, Lorens JB, Engelsen AST. AXL Targeting Abrogates Autophagic Flux and Induces Immunogenic Cell Death in Drug-Resistant Cancer Cells. J Thorac Oncol 2020; 15:973-999. [PMID: 32018052 PMCID: PMC7397559 DOI: 10.1016/j.jtho.2020.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/29/2019] [Accepted: 01/19/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Acquired cancer therapy resistance evolves under selection pressure of immune surveillance and favors mechanisms that promote drug resistance through cell survival and immune evasion. AXL receptor tyrosine kinase is a mediator of cancer cell phenotypic plasticity and suppression of tumor immunity, and AXL expression is associated with drug resistance and diminished long-term survival in a wide range of malignancies, including NSCLC. METHODS We aimed to investigate the mechanisms underlying AXL-mediated acquired resistance to first- and third-generation small molecule EGFR tyrosine kinase inhibitors (EGFRi) in NSCLC. RESULTS We found that EGFRi resistance was mediated by up-regulation of AXL, and targeting AXL reduced reactivation of the MAPK pathway and blocked onset of acquired resistance to long-term EGFRi treatment in vivo. AXL-expressing EGFRi-resistant cells revealed phenotypic and cell signaling heterogeneity incompatible with a simple bypass signaling mechanism, and were characterized by an increased autophagic flux. AXL kinase inhibition by the small molecule inhibitor bemcentinib or siRNA mediated AXL gene silencing was reported to inhibit the autophagic flux in vitro, bemcentinib treatment blocked clonogenicity and induced immunogenic cell death in drug-resistant NSCLC in vitro, and abrogated the transcription of autophagy-associated genes in vivo. Furthermore, we found a positive correlation between AXL expression and autophagy-associated gene signatures in a large cohort of human NSCLC (n = 1018). CONCLUSION Our results indicate that AXL signaling supports a drug-resistant persister cell phenotype through a novel autophagy-dependent mechanism and reveals a unique immunogenic effect of AXL inhibition on drug-resistant NSCLC cells.
Collapse
Affiliation(s)
- Maria L Lotsberg
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Katarzyna Wnuk-Lipinska
- Department of Biomedicine, University of Bergen, Bergen, Norway; BerGenBio ASA, Bergen, Norway
| | - Stéphane Terry
- INSERM UMR 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ning Lu
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Laura Trachsel-Moncho
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gro V Røsland
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | | | - Austin Rayford
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Kirstine Jacobsen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik J Ditzel
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Olav K Vintermyr
- Department of Pathology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Trever G Bivona
- Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - John Minna
- Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, Departments of Surgery, Pharmacology and Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Rolf A Brekken
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, Departments of Surgery, Pharmacology and Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Bruce Baguley
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jean Paul Thiery
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; INSERM UMR 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Biomedical Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, A-STAR, Singapore; Guangzhou Institutes of Biomedicine and Health, Guangzhou, People's Republic of China; Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong
| | - Salem Chouaib
- Department of Pathology, Haukeland University Hospital, Bergen, Norway; Thumbay Research Institute for Precision Medicine, GMU Ajman, United Arab Emirates
| | - James B Lorens
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Agnete Svendsen Tenfjord Engelsen
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway; INSERM UMR 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
37
|
Okura N, Nishioka N, Yamada T, Taniguchi H, Tanimura K, Katayama Y, Yoshimura A, Watanabe S, Kikuchi T, Shiotsu S, Kitazaki T, Nishiyama A, Iwasaku M, Kaneko Y, Uchino J, Uehara H, Horinaka M, Sakai T, Tanaka K, Kozaki R, Yano S, Takayama K. ONO-7475, a Novel AXL Inhibitor, Suppresses the Adaptive Resistance to Initial EGFR-TKI Treatment in EGFR-Mutated Non-Small Cell Lung Cancer. Clin Cancer Res 2020; 26:2244-2256. [PMID: 31953310 DOI: 10.1158/1078-0432.ccr-19-2321] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/16/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Currently, an optimal therapeutic strategy comprising molecularly targeted agents for treating EGFR-mutated non-small cell lung cancer (NSCLC) patients with acquired resistance to osimertinib is not available. Therefore, the initial therapeutic intervention is crucial for the prolonged survival of these patients. The activation of anexelekto (AXL) signaling is known to be associated with intrinsic and acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs). In this study, we investigated the best therapeutic strategy to combat AXL-induced tolerance to EGFR-TKIs using the novel AXL inhibitor ONO-7475. EXPERIMENTAL DESIGN We examined the efficacy of ONO-7475 in combination with EGFR-TKIs in EGFR-mutated NSCLC cells using in vitro and in vivo experiments. We investigated the correlation between AXL expression in tumors and clinical outcomes with osimertinib for EGFR-mutated NSCLC patients with acquired resistance to initial EGFR-TKIs. RESULTS ONO-7475 sensitized AXL-overexpressing EGFR-mutant NSCLC cells to the EGFR-TKIs osimertinib and dacomitinib. In addition, ONO-7475 suppressed the emergence and maintenance of EGFR-TKI-tolerant cells. In the cell line-derived xenograft models of AXL-overexpressing EGFR-mutated lung cancer treated with osimertinib, initial combination therapy of ONO-7475 and osimertinib markedly regressed tumors and delayed tumor regrowth compared with osimertinib alone or the combination after acquired resistance to osimertinib. AXL expression in EGFR-TKI refractory tumors did not correlate with the sensitivity of osimertinib. CONCLUSIONS These results demonstrate that ONO-7475 suppresses the emergence and maintenance of tolerant cells to the initial EGFR-TKIs, osimertinib or dacomitinib, in AXL-overexpressing EGFR-mutated NSCLC cells, suggesting that ONO-7475 and osimertinib is a highly potent combination for initial treatment.
Collapse
Affiliation(s)
- Naoko Okura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoya Nishioka
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Hirokazu Taniguchi
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Keiko Tanimura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihiro Yoshimura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shinsuke Shiotsu
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Takeshi Kitazaki
- Department of Respiratory Medicine, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiko Kaneko
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hisanori Uehara
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kohei Tanaka
- Research Center of Oncology, Discovery and Research, Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Ryohei Kozaki
- Research Center of Oncology, Discovery and Research, Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
38
|
Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov 2020; 19:39-56. [PMID: 31601994 DOI: 10.1038/s41573-019-0044-1] [Citation(s) in RCA: 467] [Impact Index Per Article: 93.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 01/05/2023]
Abstract
The success of targeted therapies in cancer treatment has been impeded by various mechanisms of resistance. Besides the acquisition of resistance-conferring genetic mutations, reversible mechanisms that lead to drug tolerance have emerged. Plasticity in tumour cells drives their transformation towards a phenotypic state that no longer depends on the drug-targeted pathway. These drug-refractory cells constitute a pool of slow-cycling cells that can either regain drug sensitivity upon treatment discontinuation or acquire permanent resistance to therapy and drive relapse. In the past few years, cell plasticity has emerged as a mode of targeted therapy evasion in various cancers, ranging from prostate and lung adenocarcinoma to melanoma and basal cell carcinoma. Our understanding of the mechanisms that control this phenotypic switch has also expanded, revealing the crucial role of reprogramming factors and chromatin remodelling. Further deciphering the molecular basis of tumour cell plasticity has the potential to contribute to new therapeutic strategies which, combined with existing anticancer treatments, could lead to deeper and longer-lasting clinical responses.
Collapse
Affiliation(s)
- Soufiane Boumahdi
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | | |
Collapse
|
39
|
Ho CJ, Gorski SM. Molecular Mechanisms Underlying Autophagy-Mediated Treatment Resistance in Cancer. Cancers (Basel) 2019; 11:E1775. [PMID: 31717997 PMCID: PMC6896088 DOI: 10.3390/cancers11111775] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Despite advances in diagnostic tools and therapeutic options, treatment resistance remains a challenge for many cancer patients. Recent studies have found evidence that autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation and recycling, contributes to treatment resistance in different cancer types. A role for autophagy in resistance to chemotherapies and targeted therapies has been described based largely on associations with various signaling pathways, including MAPK and PI3K/AKT signaling. However, our current understanding of the molecular mechanisms underlying the role of autophagy in facilitating treatment resistance remains limited. Here we provide a comprehensive summary of the evidence linking autophagy to major signaling pathways in the context of treatment resistance and tumor progression, and then highlight recently emerged molecular mechanisms underlying autophagy and the p62/KEAP1/NRF2 and FOXO3A/PUMA axes in chemoresistance.
Collapse
Affiliation(s)
- Cally J. Ho
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
40
|
Labrie M, Kendsersky ND, Ma H, Campbell L, Eng J, Chin K, Mills GB. Proteomics advances for precision therapy in ovarian cancer. Expert Rev Proteomics 2019; 16:841-850. [PMID: 31512530 PMCID: PMC6814571 DOI: 10.1080/14789450.2019.1666004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/06/2019] [Indexed: 10/26/2022]
Abstract
Introduction: Due to the relatively low mutation rate and high frequency of copy number variation, finding actionable genetic drivers of high-grade serous carcinoma (HGSC) is a challenging task. Furthermore, emerging studies show that genetic alterations are frequently poorly represented at the protein level adding a layer of complexity. With improvements in large-scale proteomic technologies, proteomics studies have the potential to provide robust analysis of the pathways driving high HGSC behavior. Areas covered: This review summarizes recent large-scale proteomics findings across adequately sized ovarian cancer sample sets. Key words combined with 'ovarian cancer' including 'proteomics', 'proteogenomic', 'reverse-phase protein array', 'mass spectrometry', and 'adaptive response', were used to search PubMed. Expert opinion: Proteomics analysis of HGSC as well as their adaptive responses to therapy can uncover new therapeutic liabilities, which can reduce the emergence of drug resistance and potentially improve patient outcomes. There is a pressing need to better understand how the genomic and epigenomic heterogeneity intrinsic to ovarian cancer is reflected at the protein level and how this information could be used to improve patient outcomes.
Collapse
Affiliation(s)
- Marilyne Labrie
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Nicholas D Kendsersky
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Hongli Ma
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Lydia Campbell
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Jennifer Eng
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Koei Chin
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Gordon B Mills
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Department of Systems Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
Zhao X, Ren Y, Lawlor M, Shah BD, Park PMC, Lwin T, Wang X, Liu K, Wang M, Gao J, Li T, Xu M, Silva AS, Lee K, Zhang T, Koomen JM, Jiang H, Sudalagunta PR, Meads MB, Cheng F, Bi C, Fu K, Fan H, Dalton WS, Moscinski LC, Shain KH, Sotomayor EM, Wang GG, Gray NS, Cleveland JL, Qi J, Tao J. BCL2 Amplicon Loss and Transcriptional Remodeling Drives ABT-199 Resistance in B Cell Lymphoma Models. Cancer Cell 2019; 35:752-766.e9. [PMID: 31085176 PMCID: PMC6945775 DOI: 10.1016/j.ccell.2019.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/19/2018] [Accepted: 04/13/2019] [Indexed: 10/26/2022]
Abstract
Drug-tolerant "persister" tumor cells underlie emergence of drug-resistant clones and contribute to relapse and disease progression. Here we report that resistance to the BCL-2 targeting drug ABT-199 in models of mantle cell lymphoma and double-hit lymphoma evolves from outgrowth of persister clones displaying loss of 18q21 amplicons that harbor BCL2. Further, persister status is generated via adaptive super-enhancer remodeling that reprograms transcription and offers opportunities for overcoming ABT-199 resistance. Notably, pharmacoproteomic and pharmacogenomic screens revealed that persisters are vulnerable to inhibition of the transcriptional machinery and especially to inhibition of cyclin-dependent kinase 7 (CDK7), which is essential for the transcriptional reprogramming that drives and sustains ABT-199 resistance. Thus, transcription-targeting agents offer new approaches to disable drug resistance in B-cell lymphomas.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yuan Ren
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Matthew Lawlor
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bijal D Shah
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paul M C Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tint Lwin
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kenian Liu
- Department of Laboratory Medicine and Hematopathology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Michelle Wang
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jing Gao
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Tao Li
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of VIP Medical Services, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mousheng Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ariosto S Silva
- Department of Cancer Physiology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kaplan Lee
- BayCare Laboratories, LLC, Tampa, FL 33634, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - John M Koomen
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Huijuan Jiang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Praneeth R Sudalagunta
- Department of Cancer Physiology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Mark B Meads
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Fengdong Cheng
- Department of Hematology and Oncology, George Washington University, Washington, DC 20052, USA
| | - Chengfeng Bi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Kai Fu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Huitao Fan
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - William S Dalton
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Lynn C Moscinski
- Department of Laboratory Medicine and Hematopathology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kenneth H Shain
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eduardo M Sotomayor
- Department of Hematology and Oncology, George Washington University, Washington, DC 20052, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianguo Tao
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Laboratory Medicine and Hematopathology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
42
|
Emran AA, Marzese DM, Menon DR, Hammerlindl H, Ahmed F, Richtig E, Duijf P, Hoon DS, Schaider H. Commonly integrated epigenetic modifications of differentially expressed genes lead to adaptive resistance in cancer. Epigenomics 2019; 11:732-737. [PMID: 31070054 PMCID: PMC6595545 DOI: 10.2217/epi-2018-0173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: To investigate the integrated epigenetic regulation of acquired drug resistance in cancer. Materials & methods: Our gene expression data of five induced drug-tolerant cell models, one resistant cell line and one publicly available drug-resistant dataset were integrated to identify common differentially expressed genes and pathways. ChIP-seq and DNA methylation by HM450K beadchip were used to study the epigenetic profile of differential expressed genes. Results & conclusion: Integrated transcriptomic analysis identified a common ‘viral mimicry’ related gene signature in induced drug-tolerant cells and the resistant state. Analysis of the epigenetic regulation revealed a common set of down-regulated genes, which are marked and regulated by a concomitant loss of H3K4me3, gain of H3K9me3 and increment of regional DNA methylation levels associated with tumor suppressor genes and apoptotic signaling.
Collapse
Affiliation(s)
- Abdullah Al Emran
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.,Centenary Institute of Cancer Medicine & Cell Biology, University of Sydney, Camperdown, NSW, Australia
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute, 2200 Santa Monica Boulevard, Santa Monica, CA 90404, USA
| | - Dinoop R Menon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute, 2200 Santa Monica Boulevard, Santa Monica, CA 90404, USA
| | - Heinz Hammerlindl
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Farzana Ahmed
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Erika Richtig
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Pascal Duijf
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Dave Sb Hoon
- Centenary Institute of Cancer Medicine & Cell Biology, University of Sydney, Camperdown, NSW, Australia
| | - Helmut Schaider
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.,Department of Dermatology, The Townsville Hospital, Douglas, QLD, Australia
| |
Collapse
|
43
|
Kulkarni V, Kulkarni P. Intrinsically disordered proteins and phenotypic switching: Implications in cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:63-84. [PMID: 31521237 DOI: 10.1016/bs.pmbts.2019.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now well established that intrinsically disordered proteins (IDPs) that constitute a large part of the proteome across the three kingdoms, play critical roles in several biological processes including phenotypic switching. However, dysregulated expression of IDPs that engage in promiscuous interactions can lead to pathological states. In this chapter, using cancer as a paradigm, we discuss how IDP conformational dynamics and the resultant conformational noise can modulate phenotypic switching. Thus, contrary to the prevailing wisdom that phenotypic switching is highly deterministic (has a genetic underpinning) in cancer, emerging evidence suggests that non-genetic mechanisms, at least in part due to the conformational noise, may also be a confounding factor in phenotypic switching.
Collapse
Affiliation(s)
- Vivek Kulkarni
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States.
| |
Collapse
|
44
|
Emerging roles of H3K9me3, SETDB1 and SETDB2 in therapy-induced cellular reprogramming. Clin Epigenetics 2019; 11:43. [PMID: 30850015 PMCID: PMC6408861 DOI: 10.1186/s13148-019-0644-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background A multitude of recent studies has observed common epigenetic changes develop in tumour cells of multiple lineages following exposure to stresses such as hypoxia, chemotherapeutics, immunotherapy or targeted therapies. A significant increase in the transcriptionally repressive mark trimethylated H3K9 (H3K9me3) is becoming associated with treatment-resistant phenotypes suggesting upstream mechanisms may be a good target for therapy. We have reported that the increase in H3K9me3 is derived from the methyltransferases SETDB1 and SETDB2 following treatment in melanoma, lung, breast and colorectal cancer cell lines, as well as melanoma patient data. Other groups have observed a number of characteristics such as epigenetic remodelling, increased interferon signalling, cell cycle inhibition and apoptotic resistance that have also been reported by us suggesting these independent studies are investigating similar or identical phenomena. Main body Firstly, this review introduces reports of therapy-induced reprogramming in cancer populations with highly similar slow-cycling phenotypes that suggest a role for both IFN signalling and epigenetic remodelling in the acquisition of drug tolerance. We then describe plausible connections between the type 1 IFN pathway, slow-cycling phenotypes and these epigenetic mechanisms before reviewing recent evidence on the roles of SETDB1 and SETDB2, alongside their product H3K9me3, in treatment-induced reprogramming and promotion of drug resistance. The potential mechanisms for the activation of SETDB1 and SETDB2 and how they might arise in treatment is also discussed mechanistically, with a focus on their putative induction by inflammatory signalling. Moreover, we theorise their timely role in attenuating inflammation after their activation in order to promote a more resilient phenotype through homeostatic coordination of H3K9me3. We also examine the relatively uncharacterized functions of SETDB2 with some comparison to the more well-known qualities of SETDB1. Finally, an emerging overall mechanism for the epigenetic maintenance of this transient phenotype is outlined by summarising the collective literature herein. Conclusion A number of converging phenotypes outline a stress-responsive mechanism for SETDB1 and SETDB2 activation and subsequent increased survival, providing novel insights into epigenetic biology. A clearer understanding of how SETDB1/2-mediated transcriptional reprogramming can subvert treatment responses will be invaluable in improving length and efficacy of modern therapies.
Collapse
|