1
|
Kubota S, Kawaki H, Perbal B, Kawata K, Hattori T, Nishida T. Cellular communication network factor 3 in cartilage development and maintenance. J Cell Commun Signal 2021; 15:533-543. [PMID: 34125392 PMCID: PMC8642582 DOI: 10.1007/s12079-021-00629-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Cellular communication network factor (CCN) 3 is one of the classical members of the CCN family, which are characterized by common molecular structures and multiple functionalities. Although this protein was discovered as a gene product overexpressed in a truncated form in nephroblastoma, recent studies have revealed its physiological roles in the development and homeostasis of mammalian species, in addition to its pathological association with a number of diseases. Cartilage is a tissue that creates most of the bony parts and cartilaginous tissues that constitute the human skeleton, in which CCN3 is also differentially produced to exert its molecular missions therein. In this review article, after the summary of the molecular structure and function of CCN3, recent findings on the regulation of ccn3 expression and the roles of CCN3 in endochondral ossification, cartilage development, maintenance and disorders are introduced with an emphasis on the metabolic regulation and function of this matricellular multifunctional molecule.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
2
|
CCN3 (NOV) Drives Degradative Changes in Aging Articular Cartilage. Int J Mol Sci 2020; 21:ijms21207556. [PMID: 33066270 PMCID: PMC7593953 DOI: 10.3390/ijms21207556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Aging is a major risk factor of osteoarthritis, which is characterized by the degeneration of articular cartilage. CCN3, a member of the CCN family, is expressed in cartilage and has various physiological functions during chondrocyte development, differentiation, and regeneration. Here, we examine the role of CCN3 in cartilage maintenance. During aging, the expression of Ccn3 mRNA in mouse primary chondrocytes from knee cartilage increased and showed a positive correlation with p21 and p53 mRNA. Increased accumulation of CCN3 protein was confirmed. To analyze the effects of CCN3 in vitro, either primary cultured human articular chondrocytes or rat chondrosarcoma cell line (RCS) were used. Artificial senescence induced by H2O2 caused a dose-dependent increase in Ccn3 gene and CCN3 protein expression, along with enhanced expression of p21 and p53 mRNA and proteins, as well as SA-β gal activity. Overexpression of CCN3 also enhanced p21 promoter activity via p53. Accordingly, the addition of recombinant CCN3 protein to the culture increased the expression of p21 and p53 mRNAs. We have produced cartilage-specific CCN3-overexpressing transgenic mice, and found degradative changes in knee joints within two months. Inflammatory gene expression was found even in the rib chondrocytes of three-month-old transgenic mice. Similar results were observed in human knee articular chondrocytes from patients at both mRNA and protein levels. These results indicate that CCN3 is a new senescence marker of chondrocytes, and the overexpression of CCN3 in cartilage may in part promote chondrocyte senescence, leading to the degeneration of articular cartilage through the induction of p53 and p21.
Collapse
|
3
|
Zhang C, Zhang Y, Zhang W, Tong H, Li S, Yan Y. WISP1 promotes bovine MDSC differentiation via recruitment of ANXA1 for the regulation of the TGF-β signalling pathway. Mol Cell Biochem 2020; 470:215-227. [PMID: 32458119 DOI: 10.1007/s11010-020-03763-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023]
Abstract
Skeletal muscle is one of the most important tissues of the human body necessary for sporting activities. The differentiation of muscle-derived satellite cells (MDSCs) plays an important role in the development and regeneration of skeletal muscles. Similarly, the Wnt/β-catenin signalling pathway plays an important role in the process of muscle differentiation. Wnt1-inducible signalling pathway protein-1 (WISP1), a downstream protein of the Wnt/β-catenin signalling pathway and a member of the CCN family that also plays an important role in the differentiation process, and its expression increase during the differentiation of bovine MDSCs. However, its role in MDSC differentiation is poorly understood. Therefore, we investigated the mechanisms regulating this process via Western blot and immunofluorescence staining. Immunoprecipitation and mass spectrometry detected annexin A1 (ANXA1), a protein that interacts with WISP1. To determine whether WISP1 influences TGF-β signalling and differentiation independently of ANXA1, the latter was knocked down, while WISP1 was activated. WISP1 expression increased significantly during bovine MDSC differentiation. However, WISP1 did not affect the TGF-β signalling pathway protein marker when ANXA1 was inhibited. Taken together, WISP1 regulates the TGF-β signalling pathway through ANXA1 recruitment, thereby promoting bovine MDSC differentiation, suggesting the Wnt/β-catenin signalling pathway as another target to promote cell differentiation.
Collapse
Affiliation(s)
- Chunyu Zhang
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, 150030, Heilongjiang, China
| | - Yuhan Zhang
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, 150030, Heilongjiang, China
| | - Wenyu Zhang
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, 150030, Heilongjiang, China
| | - Huili Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, 150030, Heilongjiang, China
| | - Shufeng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, 150030, Heilongjiang, China
| | - Yunqin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
4
|
Wei Y, Peng L, Li Y, Zhang N, Shang K, Duan L, Zhong J, Chen J. Higher Serum CCN3 Is Associated with Disease Activity and Inflammatory Markers in Rheumatoid Arthritis. J Immunol Res 2020; 2020:3891425. [PMID: 32455138 PMCID: PMC7232667 DOI: 10.1155/2020/3891425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 01/18/2023] Open
Abstract
Nephroblastoma overexpressed protein (NOV/CCN3), the early discovered member of the CCN family, has recently been suggested to be involved in a number of inflammatory processes, including wound healing, alveolar epithelial cell inflammation, cancer metastasis, and macrophage foam cell formation. However, the role of CCN3 in rheumatoid arthritis (RA), a classic autoimmune and inflammatory disease, remains elusive. RA is a chronic systemic autoimmune disease that eventually leads to cartilage and bone destruction and joint dysfunction. In this study, we investigated the potential of serum CCN3 as a biomarker for RA. The serum levels of CCN3 were measured by ELISA. The clinical and laboratory parameters were collected from a clinical record system, and disease activity was determined by joint disease activity score 28 (DAS28). Our results showed that the serum levels of CCN3 were significantly increased in RA patients compared to healthy controls. Furthermore, the CCN3 level was positively correlated with DAS28 (CRP), DAS28 (ESR), and the level of anti-CCP Ab, an autoantibody highly specific for RA. Furthermore, CCN3 showed a positive correlation with inflammatory cytokine IL-6, while no significant correlation with TNF-α was observed. These data suggest that CCN3 plays an important role in the development of RA and might be a potential disease activity biomarker for RA.
Collapse
Affiliation(s)
- Yingying Wei
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang University, Nanchang, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linan Peng
- School of Medicine, Xiamen University, Xiamen, China
| | - Yi Li
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang University, Nanchang, China
| | - Na Zhang
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang University, Nanchang, China
| | - Ke Shang
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang University, Nanchang, China
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang University, Nanchang, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Chen
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Huang X, Ni B, Mao Z, Xi Y, Chu X, Zhang R, Ma X, You H. NOV/CCN3 induces cartilage protection by inhibiting PI3K/AKT/mTOR pathway. J Cell Mol Med 2019; 23:7525-7534. [PMID: 31454155 PMCID: PMC6815824 DOI: 10.1111/jcmm.14621] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 02/01/2023] Open
Abstract
Osteoarthritis (OA), an age‐related degenerative joint disease, is pathologically characterized by articular cartilage degeneration and synovial inflammation. Nephroblastoma overexpressed (NOV or CCN3), a matricellular protein, is a primary member of the CCN family (Cyr61, Ctgf, NOV) of proteins and is involved in various inflammatory disorders. Previous studies reported that CCN3 might play a therapeutic role in OA. However, the underlying mechanism remains unclear. In this study, we confirmed the expression of CCN3 was decreased in human and rat OA articular cartilage. Recombinant CCN3 ameliorated the IL‐1β‐induced matrix catabolism, as demonstrated by MMP1, MMP3, MMP13, ADAMTS5 and iNOS expression, in vitro. In addition, the degradation of cartilage matrix such as collagen 2 and aggrecan could be reversed by CCN3. Furthermore, we found CCN3 promoted autophagy as Atg5, Beclin1 and LC3‐II expression were increased. High‐mobility group box 1 was negatively correlated with CCN3 in IL‐1β‐induced osteoarthritis responses, and HMGB1 is involved in the protective effect of CCN3 in OA. Moreover, CCN3 overexpression decreased the expression of HMGB1 and reversed the IL‐1β induced MMPs production. Additionally, recombinant CCN3 or CCN3 overexpression attenuated the activation of PI3K/AKT/mTOR pathway induced by IL‐1β. Our study presents new mechanisms of CCN3 in osteoarthritis and indicates that CCN3 can serve as a novel potential therapeutic target for osteoarthritis.
Collapse
Affiliation(s)
- Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowei Ni
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zekai Mao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Chu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohu Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|