1
|
Christou C, Christodoulou MI, Zaravinos A, Gkretsi V. Ras suppressor 1 long form (RSU1L) silencing promotes apoptosis in invasive breast cancer cells. Cell Signal 2023; 101:110522. [PMID: 36375714 DOI: 10.1016/j.cellsig.2022.110522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Ras Suppressor-1 (RSU1) is a cell-extracellular matrix (ECM) adhesion protein implicated in breast cancer (BC) cell metastasis. Nevertheless, its role in apoptosis is yet unknown. In the present study, we used bioinformatics tools to evaluate the association of RSU1 expression and BC patient survival, the expression of basic pro- and anti-apoptotic genes in metastatic BC samples and their correlation with the expression of RSU1. Then, we specifically depleted RSU1 long form (RSU1L) using a short hairpin RNA (shRNA) silencing approach in two BC cell lines, the non-invasive MCF-7 and the highly invasive MDA-MB-231-LM2 cells and assessed gene expression of pro-and anti-apoptotic genes, as well as cell survival and apoptosis. Our results showed that high RSU1 expression was correlated with poor survival and significant changes were found in the expression of apoptosis-related genes (PUMA, TP53, BCL-2 and BCL-XL) in metastatic BC. Moreover, silencing of the long and most common isoform of RSU1 (RSU1L) resulted in the upregulation of PUMA and TP53 and concomitant downregulation of anti-apoptotic BCL-2 and BCL-XL, with the effect being more prominent in invasive MDA-MB-231-LM2 cells. Finally, RSU1L depletion leads to a dramatic increase in apoptosis of MDA-MB-231-LM2 cells, while no change was observed in the apoptotic rate of MCF-7 cells. This is the first study linking RSU1L with apoptosis and provides evidence for its differential role in cell lines of different invasive potential. This indicates that RSU1L represses apoptosis in aggressive BC cells helping them evade cell death and survive.
Collapse
Affiliation(s)
- Christiana Christou
- Cancer Metastasis and Adhesion Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Maria-Ioanna Christodoulou
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Apostolos Zaravinos
- Biological Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Vasiliki Gkretsi
- Cancer Metastasis and Adhesion Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus; Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| |
Collapse
|
2
|
Dittmer J. Nuclear Mechanisms Involved in Endocrine Resistance. Front Oncol 2021; 11:736597. [PMID: 34604071 PMCID: PMC8480308 DOI: 10.3389/fonc.2021.736597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022] Open
Abstract
Endocrine therapy is a standard treatment offered to patients with ERα (estrogen receptor α)-positive breast cancer. In endocrine therapy, ERα is either directly targeted by anti-estrogens or indirectly by aromatase inhibitors which cause estrogen deficiency. Resistance to these drugs (endocrine resistance) compromises the efficiency of this treatment and requires additional measures. Endocrine resistance is often caused by deregulation of the PI3K/AKT/mTOR pathway and/or cyclin-dependent kinase 4 and 6 activities allowing inhibitors of these factors to be used clinically to counteract endocrine resistance. The nuclear mechanisms involved in endocrine resistance are beginning to emerge. Exploring these mechanisms may reveal additional druggable targets, which could help to further improve patients' outcome in an endocrine resistance setting. This review intends to summarize our current knowledge on the nuclear mechanisms linked to endocrine resistance.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
3
|
Yang H, Lin L, Sun K, Zhang T, Chen W, Li L, Xie Y, Wu C, Wei Z, Yu C. Complex structures of Rsu1 and PINCH1 reveal a regulatory mechanism of the ILK/PINCH/Parvin complex for F-actin dynamics. eLife 2021; 10:64395. [PMID: 33587032 PMCID: PMC7909951 DOI: 10.7554/elife.64395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Communications between actin filaments and integrin-mediated focal adhesion (FA) are crucial for cell adhesion and migration. As a core platform to organize FA proteins, the tripartite ILK/PINCH/Parvin (IPP) complex interacts with actin filaments to regulate the cytoskeleton-FA crosstalk. Rsu1, a Ras suppressor, is enriched in FA through PINCH1 and plays important roles in regulating F-actin structures. Here, we solved crystal structures of the Rsu1/PINCH1 complex, in which the leucine-rich-repeats of Rsu1 form a solenoid structure to tightly associate with the C-terminal region of PINCH1. Further structural analysis uncovered that the interaction between Rsu1 and PINCH1 blocks the IPP-mediated F-actin bundling by disrupting the binding of PINCH1 to actin. Consistently, overexpressing Rsu1 in HeLa cells impairs stress fiber formation and cell spreading. Together, our findings demonstrated that Rsu1 is critical for tuning the communication between F-actin and FA by interacting with the IPP complex and negatively modulating the F-actin bundling.
Collapse
Affiliation(s)
- Haibin Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Faculty of Health Sciences, University of Macau, Macau, China
| | - Leishu Lin
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kang Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ting Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Wan Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Lianghui Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuchen Xie
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, School of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, United States
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China
| |
Collapse
|
4
|
MicroRNA-Dependent Targeting of RSU1 and the IPP Adhesion Complex Regulates the PTEN/PI3K/AKT Signaling Pathway in Breast Cancer Cell Lines. Int J Mol Sci 2020; 21:ijms21155458. [PMID: 32751711 PMCID: PMC7432699 DOI: 10.3390/ijms21155458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
(1) Background: The microRNA (miR)-directed control of gene expression is correlated with numerous physiological processes as well as the pathological features of tumors. The focus of this study is on the role of miRs in the regulation of RSU1 and proteins in the IPP (integrin linked kinase, PINCH and parvin) complex. Because the IPP adaptor proteins link β integrins to actin cytoskeleton, and the RSU1 signaling protein connects the complex to the activation of cJun, ATF2 and the transcription of PTEN, their reduction by miRs has the potential to alter both adhesion and survival signaling. (2) Methods: Multiple database analyses were used to identify miRs that target RSU1 and PINCH1. miR transfection validated the effects of miRs on RSU1, PINCH1 and downstream targets in breast cancer cell lines. (3) Results: The miRs targeting RSU1 mRNA include miR-182-5p, -409-3p, -130a-3p, -221-3p, -744-5p and -106b-5p. Data show that miR-182-5p and -409-3p reduce RSU1, PINCH1 and inhibit the ATF2 activation of PTEN expression. miR-221-3p and miR-130a-3p target RSU1 and PINCH1 and, conversely, RSU1 depletion increases miR-221-3p and miR-130a-3p. (4) Conclusions: miRs targeting RSU1 and PINCH1 in mammary epithelial or luminal breast cancer cell lines reduced RSU1 signaling to p38 MAP kinase and ATF2, inhibiting the expression of PTEN. miR-221-3p, known to target PTEN and cell cycle regulators, also targets RSU1 and PINCH1 in luminal breast cancer cell lines.
Collapse
|
5
|
Ras Suppressor-1 (RSU1) in Cancer Cell Metastasis: A Tale of a Tumor Suppressor. Int J Mol Sci 2020; 21:ijms21114076. [PMID: 32517326 PMCID: PMC7312364 DOI: 10.3390/ijms21114076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer is a multifactorial disease responsible for millions of deaths worldwide. It has a strong genetic background, as mutations in oncogenes or tumor suppressor genes contribute to the initiation of cancer development. Integrin signaling as well as the signaling pathway of Ras oncogene, have been long implicated both in carcinogenesis and disease progression. Moreover, they have been involved in the promotion of metastasis, which accounts for the majority of cancer-related deaths. Ras Suppressor-1 (RSU1) was identified as a suppressor of Ras-induced transformation and was shown to localize to cell-extracellular matrix adhesions. Recent findings indicate that its expression is elevated in various cancer types, while its role in regulating metastasis-related cellular processes remains largely unknown. Interestingly, there is no in vivo work in the field to date, and thus, all relevant knowledge stems from in vitro studies. In this review, we summarize recent studies using breast, liver and brain cancer cell lines and highlight the role of RSU1 in regulating cancer cell invasion.
Collapse
|