1
|
Afrisham R, Farrokhi V, Ayyoubzadeh SM, Vatannejad A, Fadaei R, Moradi N, Jadidi Y, Alizadeh S. CCN5/WISP2 serum levels in patients with coronary artery disease and type 2 diabetes and its correlation with inflammation and insulin resistance; a machine learning approach. Biochem Biophys Rep 2024; 40:101857. [PMID: 39552711 PMCID: PMC11564987 DOI: 10.1016/j.bbrep.2024.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Studies have shown various effects of CCN5/WISP2 on metabolic pathways, yet no prior investigation has established a link between its serum levels and CAD and/or T2DM. Therefore, this study seeks to explore the relation between CCN5 and the risk factor of CAD and/or diabetes, in comparison to individuals with good health, marking a pioneering endeavor in this field. Methods This case-control study investigates serum levels of CCN5, TNF-α, IL-6, adiponectin, and fasting insulin in a population of 160 individuals recruited into four equal groups (T2DM, CAD, CAD-T2DM, and healthy controls). Statistical tests comprise Chi-square tests, ANOVA, Spearman correlation, and logistic regression. ROC curves were used to represent the diagnostic potential of CCN5. Disease states are predicted by machine learning algorithms: Decision Tree, Gradient Boosted Trees, Random Forest, Naïve Bayes, and KNN. These models' performance was evaluated by various metrics, all of which were ensured to be robust by applying 10-fold cross-validation. Analyses were done in SPSS and GraphPad Prism and RapidMiner software. Results The CAD, T2DM, and CAD-T2DM groups had significantly higher CCN5 concentrations compared to the healthy control group (CAD: 336.87 ± 107.36 ng/mL, T2DM: 367.46 ± 102.15 ng/mL, CAD-T2DM: 404.68 ± 108.15 ng/mL, control: 205.62 ± 63.34 ng/mL; P < 0.001). A positive and significant correlation was observed between CCN5 and cytokines (IL-6 and TNF-α) in all patient groups (P < 0.05). Multinomial logistic regression analysis indicated a significant association between CCN5 and T2DM-CAD, T2DM, and CAD conditions (P < 0.001) even after adjusting for gender, BMI, and age (P < 0.001). Regarding the machine learning models, the Naïve Bayes model showed the best performance for classifying cases of T2DM, achieving an AUC value of 0.938±0.066. For predicting CAD, the Random Forest classifier achieved the highest AUC value of 0.994±0.020. In the case of CAD-T2DM prediction, the Naïve Bayes model demonstrated the highest AUC of 0.981±0.059, along with an Accuracy of 97.50 % ± 7.91 % and an F-measure of 96.67 % ± 10.54 %. Conclusion Our study has revealed, for the first time, a positive connection between CCN5 serum levels and the risk of developing T2DM and CAD. Nonetheless, more research is needed to ascertain whether CCN5 can serve as a predictive marker.
Collapse
Affiliation(s)
- Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Farrokhi
- Department of Hematology and Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nariman Moradi
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Department of Hematology and Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Barkin JM, Jin-Smith B, Torok K, Pi L. Significance of CCNs in liver regeneration. J Cell Commun Signal 2023; 17:321-332. [PMID: 37202628 PMCID: PMC10326177 DOI: 10.1007/s12079-023-00762-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
The liver has an inherent regenerative capacity via hepatocyte proliferation after mild-to-modest damage. When hepatocytes exhaust their replicative ability during chronic or severe liver damage, liver progenitor cells (LPC), also termed oval cells (OC) in rodents, are activated in the form of ductular reaction (DR) as an alternative pathway. LPC is often intimately associated with hepatic stellate cells (HSC) activation to promote liver fibrosis. The Cyr61/CTGF/Nov (CCN) protein family consists of six extracellular signaling modulators (CCN1-CCN6) with affinity to a repertoire of receptors, growth factors, and extracellular matrix proteins. Through these interactions, CCN proteins organize microenvironments and modulate cell signalings in a diverse variety of physiopathological processes. In particular, their binding to subtypes of integrin (αvβ5, αvβ3, α6β1, αvβ6, etc.) influences the motility and mobility of macrophages, hepatocytes, HSC, and LPC/OC during liver injury. This paper summarizes the current understanding of the significance of CCN genes in liver regeneration in relation to hepatocyte-driven or LPC/OC-mediated pathways. Publicly available datasets were also searched to compare dynamic levels of CCNs in developing and regenerating livers. These insights not only add to our understanding of the regenerative capability of the liver but also provide potential targets for the pharmacological management of liver repair in the clinical setting. Ccns in liver regeneration Restoring damaged or lost tissues requires robust cell growth and dynamic matrix remodeling. Ccns are matricellular proteins highly capable of influencing cell state and matrix production. Current studies have identified Ccns as active players in liver regeneration. Cell types, modes of action, and mechanisms of Ccn induction may vary depending on liver injuries. Hepatocyte proliferation is a default pathway for liver regeneration following mild-to-modest damages, working in parallel with the transient activation of stromal cells, such as macrophages and hepatic stellate cells (HSC). Liver progenitor cells (LPC), also termed oval cells (OC) in rodents, are activated in the form of ductular reaction (DR) and are associated with sustained fibrosis when hepatocytes lose their proliferative ability in severe or chronic liver damage. Ccns may facilitate both hepatocyte regeneration and LPC/OC repair via various mediators (growth factors, matrix proteins, integrins, etc.) for cell-specific and context-dependent functions.
Collapse
Affiliation(s)
- Joshua M Barkin
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Brady Jin-Smith
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Kendle Torok
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Liya Pi
- Department of Pathology, Tulane University, New Orleans, LA, USA.
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA.
| |
Collapse
|
3
|
Li S, Li S. Temperal and spatial expression of CCN1, CCN3, CCN4, CCN5 and CCN6 proteins in the developing postnatal teeth. J Cell Commun Signal 2023:10.1007/s12079-023-00758-7. [PMID: 37160590 DOI: 10.1007/s12079-023-00758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
CCN proteins are matricellular proteins and are important modulators of development and function of adult organs. However, there is no literature reporting the localization of CCN proteins during postnatal tooth development and the formation of periodontium. Therefore, the aim of our study was to investigate the expression of CCN1, CCN3, CCN4, CCN5 and CCN6 in the developing postnatal teeth. Wistar rats were used at postnatal (PN) 3.5, 7, 16 and 21 days and maxillas were processed for immunohistochemistry. At PN3.5 and PN7, preameloblasts (PA), secretory ameloblasts (SA), odontoblasts (OD) and dental pulp (DP) showed moderate to strong staining for CCN1, CCN4 and CCN6 respectively. CCN5 was intensely expressed in predentin, whereas CCN5 was undetectable in PA, SA, OD and DP. At PN16 and PN21, moderate to strong reaction with CCN1, CCN4 and CCN6 was evident in OD, DP, reduced enamel epithelium (REE), osteoblasts (OB) and periodontal ligament (PDL) respectively, while CCN5 was negative to weakly expressed in REE, OD, DP, OB, PDL and osteocytes (OC). Interestingly, the expression of CCN1, CCN4 and CCN6 was initially negative at PN16 but strong at PN21 in OC. Furthermore, there was no staining for CCN3 in the tissues studied. These results demonstrated that the expression pattern of CCN1, CCN4 and CCN6 is similar and inversely correlated with that of CCN3. CCN5 exhibits a unique distribution pattern. These data indicate that CCN proteins might play regulatory roles in amelogenesis, dentinogenesis, osteogenesis and PDL homeostasis.
Collapse
Affiliation(s)
- Shubo Li
- Department of Stomatology, College of Medicine and Health, Lishui University, Lishui, 323000, Zhejiang Province, China.
- Department of Stomatology, Affliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China.
| | - Shufang Li
- Department of Stomatology, Affliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| |
Collapse
|
4
|
Fibroblast Growth Factors and Cellular Communication Network Factors: Intimate Interplay by the Founding Members in Cartilage. Int J Mol Sci 2022; 23:ijms23158592. [PMID: 35955724 PMCID: PMC9369280 DOI: 10.3390/ijms23158592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Fibroblast growth factors (FGFs) constitute a large family of signaling molecules that act in an autocrine/paracrine, endocrine, or intracrine manner, whereas the cellular communication network factors (CCN) family is composed of six members that manipulate extracellular signaling networks. FGFs and CCNs are structurally and functionally distinct, except for the common characteristics as matricellular proteins. Both play significant roles in the development of a variety of tissues and organs, including the skeletal system. In vertebrates, most of the skeletal parts are formed and grow through a process designated endochondral ossification, in which chondrocytes play the central role. The growth plate cartilage is the place where endochondral ossification occurs, and articular cartilage is left to support the locomotive function of joints. Several FGFs, including FGF-2, one of the founding members of this family, and all of the CCNs represented by CCN2, which is required for proper skeletal development, can be found therein. Research over a decade has revealed direct binding of CCN2 to FGFs and FGF receptors (FGFRs), which occasionally affect the biological outcome via FGF signaling. Moreover, a recent study uncovered an integrated regulation of FGF and CCN genes by FGF signaling. In this review, after a brief introduction of these two families, molecular and genetic interactions between CCN and FGF family members in cartilage, and their biological effects, are summarized. The molecular interplay represents the mutual involvement of the other in their molecular functions, leading to collaboration between CCN2 and FGFs during skeletal development.
Collapse
|
5
|
Metabolic Effects of CCN5/WISP2 Gene Deficiency and Transgenic Overexpression in Mice. Int J Mol Sci 2021; 22:ijms222413418. [PMID: 34948212 PMCID: PMC8709456 DOI: 10.3390/ijms222413418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022] Open
Abstract
CCN5/WISP2 is a matricellular protein, the expression of which is under the regulation of Wnt signaling and IGF-1. Our initial characterization supports the notion that CCN5 might promote the proliferation and survival of pancreatic β-cells and thus improve the metabolic profile of the animals. More recently, the roles of endogenous expression of CCN5 and its ectopic, transgenic overexpression on metabolic regulation have been revealed through two reports. Here, we attempt to compare the experimental findings from those studies, side-by-side, in order to further establish its roles in metabolic regulation. Prominent among the discoveries was that a systemic deficiency of CCN5 gene expression caused adipocyte hypertrophy, increased adipogenesis, and lipid accumulation, resulting in insulin resistance and glucose intolerance, which were further exacerbated upon high-fat diet feeding. On the other hand, the adipocyte-specific and systemic overexpression of CCN5 caused an increase in lean body mass, improved insulin sensitivity, hyperplasia of cardiomyocytes, and increased heart mass, but decreased fasting glucose levels. CCN5 is clearly a regulator of adipocyte proliferation and maturation, affecting lean/fat mass ratio and insulin sensitivity. Not all results from these models are consistent; moreover, several important aspects of CCN5 physiology are yet to be explored.
Collapse
|
6
|
CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 2021; 15:545-566. [PMID: 34228239 PMCID: PMC8642527 DOI: 10.1007/s12079-021-00631-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The acronym for the CCN family was recently revised to represent “cellular communication network”. These six, small, cysteine-enriched and evolutionarily conserved proteins are secreted matricellular proteins, that convey and modulate intercellular communication by interacting with structural proteins, signalling factors and cell surface receptors. Their role in the development and physiology of musculoskeletal system, constituted by connective tissues where cells are interspersed in the cellular matrix, has been broadly studied. Previous research has highlighted a crucial balance of CCN proteins in mesenchymal stem cell commitment and a pivotal role for CCN1, CCN2 and their alter ego CCN3 in chondrogenesis and osteogenesis; CCN4 plays a minor role and the role of CCN5 and CCN6 is still unclear. CCN proteins also participate in osteoclastogenesis and myogenesis. In adult life, CCN proteins serve as mechanosensory proteins in the musculoskeletal system providing a steady response to environmental stimuli and participating in fracture healing. Substantial evidence also supports the involvement of CCN proteins in inflammatory pathologies, such as osteoarthritis and rheumatoid arthritis, as well as in cancers affecting the musculoskeletal system and bone metastasis. These matricellular proteins indeed show involvement in inflammation and cancer, thus representing intriguing therapeutic targets. This review discusses the current understanding of CCN proteins in the musculoskeletal system as well as the controversies and challenges associated with their multiple and complex roles, and it aims to link the dispersed knowledge in an effort to stimulate and guide readers to an area that the writers consider to have significant impact and relevant potentialities.
Collapse
|
7
|
MacDonald IJ, Huang CC, Liu SC, Lin YY, Tang CH. Targeting CCN Proteins in Rheumatoid Arthritis and Osteoarthritis. Int J Mol Sci 2021; 22:ijms22094340. [PMID: 33919365 PMCID: PMC8122640 DOI: 10.3390/ijms22094340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
The CCN family of matricellular proteins (CYR61/CCN1, CTGF/CCN2, NOV/CCN3 and WISP1-2-3/CCN4-5-6) are essential players in the key pathophysiological processes of angiogenesis, wound healing and inflammation. These proteins are well recognized for their important roles in many cellular processes, including cell proliferation, adhesion, migration and differentiation, as well as the regulation of extracellular matrix differentiation. Substantial evidence implicates four of the proteins (CCN1, CCN2, CCN3 and CCN4) in the inflammatory pathologies of rheumatoid arthritis (RA) and osteoarthritis (OA). A smaller evidence base supports the involvement of CCN5 and CCN6 in the development of these diseases. This review focuses on evidence providing insights into the involvement of the CCN family in RA and OA, as well as the potential of the CCN proteins as therapeutic targets in these diseases.
Collapse
Affiliation(s)
- Iona J. MacDonald
- Graduate Institute of Basic Medical Science, Collage of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (Y.-Y.L.)
| | - Chien-Chung Huang
- School of Medicine, Collage of Medicine, China Medical University, Taichung 406040, Taiwan;
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 65152, Taiwan;
| | - Yen-You Lin
- Graduate Institute of Basic Medical Science, Collage of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (Y.-Y.L.)
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, Collage of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (Y.-Y.L.)
- School of Medicine, Collage of Medicine, China Medical University, Taichung 406040, Taiwan;
- Graduate Institute of Biomedical Sciences, Collage of Medicine, China Medical University, Taichung 406040, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 406040, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 413305, Taiwan
- Correspondence:
| |
Collapse
|
8
|
Henrot P, Truchetet ME, Fisher G, Taïeb A, Cario M. CCN proteins as potential actionable targets in scleroderma. Exp Dermatol 2018; 28:11-18. [PMID: 30329180 DOI: 10.1111/exd.13806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022]
Abstract
Systemic sclerosis (SSc) is a complex autoimmune connective tissue disease combining inflammatory, vasculopathic and fibrotic manifestations. Skin features, which give their name to the disease and are considered as diagnostic as well as prognostic markers, have not been thoroughly investigated in terms of therapeutic targets. CCN proteins (CYR61/CCN1, CTGF/CCN2, NOV/CCN3 and WISP1-2-3 as CCN4-5-6) are a family of secreted matricellular proteins implicated in major cellular processes such as cell growth, migration, differentiation. They have already been implicated in key pathophysiological processes of SSc, namely fibrosis, vasculopathy and inflammation. In this review, we discuss the possible implication of CCN proteins in SSc pathogenesis, with a special focus on skin features, and identify the potential actionable CCN targets.
Collapse
Affiliation(s)
- Pauline Henrot
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France.,Department of Rheumatology, National Reference Center for Rare Diseases, Bordeaux University Hospital, Bordeaux, France
| | - Marie-Elise Truchetet
- Department of Rheumatology, National Reference Center for Rare Diseases, Bordeaux University Hospital, Bordeaux, France.,University of Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France
| | - Gary Fisher
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alain Taïeb
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Muriel Cario
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France.,Department of Dermatology and Pediatric Dermatology, National Center for Rare Skin Disorders, Hôpital Saint André, Bordeaux, France
| |
Collapse
|