1
|
Catalano KA, Drenkard EJ, Curchitser EN, Dedrick AG, Stuart MR, Montes HR, Pinsky ML. The contribution of nearshore oceanography to temporal variation in larval dispersal. Ecology 2024; 105:e4412. [PMID: 39193809 DOI: 10.1002/ecy.4412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/27/2024] [Accepted: 06/24/2024] [Indexed: 08/29/2024]
Abstract
Patterns of population connectivity shape ecological and evolutionary phenomena from population persistence to local adaptation and can inform conservation strategy. Connectivity patterns emerge from the interaction of individual behavior with a complex and heterogeneous environment. Despite ample observation that dispersal patterns vary through time, the extent to which variation in the physical environment can explain emergent connectivity variation is not clear. Empirical studies of its contribution promise to illuminate a potential source of variability that shapes the dynamics of natural populations. We leveraged simultaneous direct dispersal observations and oceanographic transport simulations of the clownfish Amphiprion clarkii in the Camotes Sea, Philippines, to assess the contribution of oceanographic variability to emergent variation in connectivity. We found that time-varying oceanographic simulations on both annual and monsoonal timescales partly explained the observed dispersal patterns, suggesting that temporal variation in oceanographic transport shapes connectivity variation on these timescales. However, interannual variation in observed mean dispersal distance was nearly 10 times the expected variation from biophysical simulations, revealing that additional biotic and abiotic factors contribute to interannual connectivity variation. Simulated dispersal kernels also predicted a smaller scale of dispersal than the observations, supporting the hypothesis that undocumented abiotic factors and behaviors such as swimming and navigation enhance the probability of successful dispersal away from, as opposed to retention near, natal sites. Our findings highlight the potential for coincident observations and biophysical simulations to test dispersal hypotheses and the influence of temporal variability on metapopulation persistence, local adaptation, and other population processes.
Collapse
Affiliation(s)
- Katrina A Catalano
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - Elizabeth J Drenkard
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
| | - Enrique N Curchitser
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Allison G Dedrick
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - Michelle R Stuart
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
- Department of Ecology & Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
2
|
Bani R, Marleau J, Fortin M, Daigle RM, Guichard F. Dynamic larval dispersal can mediate the response of marine metapopulations to multiple climate change impacts. OIKOS 2021. [DOI: 10.1111/oik.07760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ridouan Bani
- Dept of Biology, McGill Univ. Montréal QC Canada
| | | | - Marie‐Josée Fortin
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto Toronto ON Canada
| | - Rémi M. Daigle
- Bedford Inst. of Oceanography, Fisheries and Oceans Canada Darthmouth NS Canada
- Marine Affairs Program, Dalhousie Univ. Halifax NS Canada
| | | |
Collapse
|
3
|
Sociability interacts with temporal environmental variation to spatially structure metapopulations: A fish dispersal simulation in an ephemeral landscape. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Catalano KA, Dedrick AG, Stuart MR, Puritz JB, Montes HR, Pinsky ML. Quantifying dispersal variability among nearshore marine populations. Mol Ecol 2020; 30:2366-2377. [PMID: 33197290 DOI: 10.1111/mec.15732] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 01/17/2023]
Abstract
Dispersal drives diverse processes from population persistence to community dynamics. However, the amount of temporal variation in dispersal and its consequences for metapopulation dynamics is largely unknown for organisms with environmentally driven dispersal (e.g., many marine larvae, arthropods and plant seeds). Here, we used genetic parentage analysis to detect larval dispersal events in a common coral reef fish, Amphiprion clarkii, along 30 km of coastline consisting of 19 reef patches in Ormoc Bay, Leyte, Philippines. We quantified variation in the dispersal kernel across seven years (2012-2018) and monsoon seasons with 71 parentage assignments from 791 recruits and 1,729 adults. Connectivity patterns differed significantly among years and seasons in the scale and shape but not in the direction of dispersal. This interannual variation in dispersal kernels introduced positive temporal covariance among dispersal routes that theory predicts is likely to reduce stochastic metapopulation growth rates below the growth rates expected from only a single or a time-averaged connectivity estimate. The extent of variation in mean dispersal distance observed here among years is comparable in magnitude to the differences across reef fish species. Considering dispersal variation will be an important avenue for further metapopulation and metacommunity research across diverse taxa.
Collapse
Affiliation(s)
- Katrina A Catalano
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Allison G Dedrick
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Michelle R Stuart
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Jonathan B Puritz
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | | | - Malin L Pinsky
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
5
|
|