1
|
Coloma-Rivero RF, Flores-Concha M, Molina RE, Soto-Shara R, Cartes Á, Oñate ÁA. Brucella and Its Hidden Flagellar System. Microorganisms 2021; 10:83. [PMID: 35056531 PMCID: PMC8781033 DOI: 10.3390/microorganisms10010083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella, a Gram-negative bacterium with a high infective capacity and a wide spectrum of hosts in the animal world, is found in terrestrial and marine mammals, as well as amphibians. This broad spectrum of hosts is closely related to the non-classical virulence factors that allow this pathogen to establish its replicative niche, colonizing epithelial and immune system cells, evading the host's defenses and defensive response. While motility is the primary role of the flagellum in most bacteria, in Brucella, the flagellum is involved in virulence, infectivity, cell growth, and biofilm formation, all of which are very important facts in a bacterium that to date has been described as a non-motile organism. Evidence of the expression of these flagellar proteins that are present in Brucella makes it possible to hypothesize certain evolutionary aspects as to where a free-living bacterium eventually acquired genetic material from environmental microorganisms, including flagellar genes, conferring on it the ability to reach other hosts (mammals), and, under selective pressure from the environment, can express these genes, helping it to evade the immune response. This review summarizes relevant aspects of the presence of flagellar proteins and puts into context their relevance in certain functions associated with the infective process. The study of these flagellar genes gives the genus Brucella a very high infectious versatility, placing it among the main organisms in urgent need of study, as it is linked to human health by direct contact with farm animals and by eventual transmission to the general population, where flagellar genes and proteins are of great relevance.
Collapse
Affiliation(s)
| | | | | | | | | | - Ángel A. Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4030000, Chile; (R.F.C.-R.); (M.F.-C.); (R.E.M.); (R.S.-S.); (Á.C.)
| |
Collapse
|
2
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
3
|
Yang J, Liu M, Liu J, Liu B, He C, Chen Z. Proteomic Analysis of Stationary Growth Stage Adaptation and Nutritional Deficiency Response of Brucella abortus. Front Microbiol 2020; 11:598797. [PMID: 33384672 PMCID: PMC7769873 DOI: 10.3389/fmicb.2020.598797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/11/2020] [Indexed: 11/15/2022] Open
Abstract
Brucellosis, an important bacterial zoonosis caused by Brucella species, has drawn increasing attention worldwide. As an intracellular pathogen, the ability of Brucella to deal with stress within the host cell is closely related to its virulence. Due to the similarity between the survival pressure on Brucella within host cells and that during the stationary phase, a label-free proteomics approach was used to study the adaptive response of Brucella abortus in the stationary stage to reveal the possible intracellular adaptation mechanism in this study. A total of 182 downregulated and 140 upregulated proteins were found in the stationary-phase B. abortus. B. abortus adapted to adverse environmental changes by regulating virulence, reproduction, transcription, translation, stress response, and energy production. In addition, both exponential- and stationary-phase B. abortus were treated with short-term starvation. The exponential B. abortus restricted cell reproduction and energy utilization and enhanced material transport in response to nutritional stress. Compared with the exponential phase, stationary Brucella adjusted their protein expression to a lesser extent under starvation. Therefore, B. abortus in the two growth stages significantly differed in the regulation of protein expression in response to the same stress. Overall, we outlined the adaptive mechanisms that B. abortus may employ during growth and compared the differences between exponential- and stationary-phase B. abortus in response to starvation.
Collapse
Affiliation(s)
- Jianghua Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | | | - Jinling Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Baoshan Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chuanyu He
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,Brucellosis Prevention and Treatment Engineering Technology Research Center of Inner Mongolia Autonomous Region, Inner Mongolia University for Nationalities, Tongliao, China.,School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Microbiological identification and analysis of Swine lungs collected from carcasses in Swine farms, china. Indian J Microbiol 2013; 53:496-8. [PMID: 24426158 DOI: 10.1007/s12088-013-0396-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022] Open
Abstract
The primary objective of this 3 years study was to determine the prevalence of porcine pathogens of the lungs of swine in swine farms in southern China. A total of 5,420 samples were collected from 200 swine farms. The bacterium that was most commonly isolated was Streptococcus suis, with 10.24 % of the samples being positive, 114 lungs (2.1 %) were positive for pseudorabies virus and 263 (4.85 %) were positive for classical swine fever virus; much lower than positive for PRRSV (15.1 %, p = 0.023) and PCV2 (13.8 %, p = 0.038). lungs that were positive for PRRSV and/or PCV-2 have significantly increased odds of being positive for any of the S. suis (9.79 vs. 0.44 %, p = 0.003).
Collapse
|
5
|
Wei C, Huang Z, Sun L, Xie J, Chen Y, Zhang M, Zhang C, Qi H, Qi W, Ning Z, Yuan L, Wang H, Zhang L, Zhang G. Expression and Antibody Preparation of GP5a Gene of Porcine Reproductive and Respiratory Syndrome Virus. Indian J Microbiol 2013; 53:370-5. [PMID: 24426138 DOI: 10.1007/s12088-013-0368-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is considered one of the most important infectious diseases to affect the swine industry and characterized by reproductive failure in late term gestation in sows and respiratory disease in pigs of all ages. The GP5a gene, encoding RNA-dependent RNA polymerase, is generally regarded as fairly conserved when compared to other viral proteins. It plays an important role in the process of duplication and transcription carried out by Porcine reproductive and respiratory syndrome virus (PRRSV). We firstly expressed and purified the GP5a protein of PRRSV. This provides a good method for the purification of expressed proteins and the preparation of the corresponding antibodies.
Collapse
Affiliation(s)
- Chunya Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Zhen Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Long Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Jiexiong Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Ye Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Minze Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Chaoyi Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong China ; Beijing Dabeinong Swine Technology Co., Ltd, 14F Zhongguancun Building No.27 Zhongguancun street, Beijing, 100080 China ; Guangzhou Lizhi Agriculture Co., Ltd, Guangzhou, China
| | - Haitao Qi
- Beijing Dabeinong Swine Technology Co., Ltd, 14F Zhongguancun Building No.27 Zhongguancun street, Beijing, 100080 China
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Liguo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Heng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | | | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong China
| |
Collapse
|