1
|
Liu J, Deng J, Tan X, Li Y, Li H, Cheng W, Jiang Z. Co-integration of laccase and xylanase from Bacillus pumilus into mini-cellulosome facilitates softwood sulfite pulp biobleaching and reduces hydrogen peroxide consumption. Int J Biol Macromol 2025; 290:139048. [PMID: 39708870 DOI: 10.1016/j.ijbiomac.2024.139048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Biobleaching is an eco-friendly strategy that can reduce costs and pollution in the pulp and paper industry. Herein, an effective biobleaching approach was proposed using a novel multi-enzyme complex. The multi-enzyme complex was constructed based on mini-cellulosome scaffolding protein integrated with laccase (BpLac) and xylanase (BpXyn) from Bacillus pumilus. The influence of different parameters on the multi-enzyme complex assembly was investigated. The multi-enzyme complex performed better than the free enzyme cocktail in softwood sulfite pulp bleaching. Specifically, free enzyme cocktail treatment decreased the kappa number from 12.2 to 9.1 and increased the brightness from 39.79 to 41.57 % ISO. With more phenolics and reducing sugars releases, the multi-enzyme complex treatment further decreased the kappa number to 8.7 and increased the brightness to 42.09 % ISO. The bleaching performance of the multi-enzyme complex could be further improved at 50 °C, pH 7.0, and 6 % pulp consistency. Measurement of the tensile strength, breaking length, and tearing index suggested that the multi-enzyme complex treatment would not damage fibers in the pulp. Moreover, the multi-enzyme complex treatment could reduce the consumption of H2O2 by 40 % in subsequent chemical bleaching. Therefore, utilizing the multi-enzyme complex in biobleaching is a promising way to advance a cleaner papermaking process.
Collapse
Affiliation(s)
- Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Jiabao Deng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Xuemei Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Yan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Huanan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Wanli Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Zhengbing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
2
|
Rajput M, Pamecha D, Kumari P, Chaturvedi P, Sharma C, Mishra R, Chauhan S. Bio-bleaching of ankara pulp with xylanase-producing bacterial consortium for sustainable handmade paper production. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100262. [PMID: 39148722 PMCID: PMC11325006 DOI: 10.1016/j.crmicr.2024.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
The paper industry faces two critical challenges: the scarcity of raw materials and the environmental impact of chemical waste pollution. Addressing the first challenge involves harnessing alternative, sustainable raw materials, while the second challenge can be mitigated through the adoption of bio-bleaching processes, which significantly reduce chemical consumption while enhancing paper brightness and quality. This study proposes a solution to both challenges by using non-woody Calotropis procera (Ankara) and a xylanase-producing microbial consortium for sustainable handmade paper production, a combination not extensively explored in prior research. To evaluate this approach, the process was divided into three stages. In stage I, Ankara fibre was pulped through open hot digestion. In stage II, the pulp was subjected to bio-bleaching in two experimental setups: Set I (without sucrose) and Set II (with sucrose) for 5 days. In stage III, chemical bleaching was used to improve the final brightness of the treated pulps. A novel comparison was made between the bio-bleaching efficiency of an individual isolate g5 (BI) and a bacterial consortium (BC). This research highlighted that bio-bleaching with the consortium effectively removed lignin (140±60 mg/l) and colour (1830±50 PCU), especially in the presence of sucrose, compared to using a single xylanase isolate. Pulp residue/filtrate collected at each stage was estimated based on parameters such as colour and lignin content. After stage III (chemical bleaching), the release of colour and lignin in pulp filtrate was higher in BI compared to BC, indicating the consortium's effectiveness during bio-bleaching, which leaves fewer degradable lignin structures for the chemical bleaching stage. Papers crafted from consortium-treated pulp also exhibited higher brightness than those treated with the isolate. This study reveals the synergistic effect of microbial consortia, leading to more efficient lignin degradation and enhanced bio-bleaching capabilities, supporting the development of greener industrial processes. Ultimately, this study demonstrates a unique and eco-friendly approach to papermaking, combining C. procera and enzymatic bio-bleaching to reduce dependency on hazardous chemicals and support sustainable industry practices.
Collapse
Affiliation(s)
- Meenakshi Rajput
- Department of Biotechnology and Microbiology, IIS (Deemed to be University), Jaipur 302020, India
| | - Disha Pamecha
- Department of Biotechnology and Microbiology, IIS (Deemed to be University), Jaipur 302020, India
| | - Preeti Kumari
- Department of Biotechnology and Microbiology, IIS (Deemed to be University), Jaipur 302020, India
| | - Payal Chaturvedi
- Department of Biotechnology and Microbiology, IIS (Deemed to be University), Jaipur 302020, India
| | - Charu Sharma
- Department of Biotechnology and Microbiology, IIS (Deemed to be University), Jaipur 302020, India
| | - Rahul Mishra
- Kumarappa National Handmade Paper Institute (KNHPI), Jaipur 302011, India
| | - Sunita Chauhan
- Kumarappa National Handmade Paper Institute (KNHPI), Jaipur 302011, India
| |
Collapse
|
3
|
Du M, Liu J, Huang B, Wang Q, Wang F, Bi L, Ma C, Song M, Jiang G. Spatial nanopores promote laccase degradation of bisphenol A and its analogs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166429. [PMID: 37619739 DOI: 10.1016/j.scitotenv.2023.166429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Bisphenol A (BPA) and its analogs are endocrine-disrupting chemicals that are frequently detected in environmental and human samples. However, the effective removal of BPA and its analogs has not yet been extensively studied. Herein, we introduce a novel enzyme reactor for the degradation of BPA and its analogs in water. The influence of pore size on the degradation efficiency of immobilized laccase in the spatial nanopores of hydrogel was investigated using BPA as a representative compound. This showed that nanopores enhance the activity of immobilized laccases in a pore size-dependent manner and increase their stability. Compared with the same amount of free laccase, the 50 mg/L BPA degradation performance of laccase immobilized in 76 nm nanopores increased to 300 %. Taking advantage of magnetic separation, this immobilized laccase can be reused, and its degradation capacity was maintained at over 73.7 % after ten reactions. Moreover, the degradation of seven BPA analogs was 1.03-5.88 times higher using laccase immobilized in nanopores compared with free laccase. Also, the biocatalyst could efficiently degrade BPA analogs in real water matrix. This study opens up a new avenue for the removal of BPA and its analogs by immobilizing laccase in nanopores, overcoming the key limitations introduced by the short enzyme life span and non-reusability.
Collapse
Affiliation(s)
- Mei Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzhang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bang Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Qiong Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Jiang K, Bai R, Luo X, Gao T, Xu F, Zhao H, Zhang D. Characterization and bioactive component analysis of filamentous bacterium XJ-16. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:49-57. [PMID: 39416907 PMCID: PMC11446373 DOI: 10.1016/j.biotno.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 10/19/2024]
Abstract
Actinomycetes, which can produce a variety of bioactive compounds in the metabolic process, is one of the important sources of novel drugs, enzymes, anti-tumor drugs and enzyme inhibitors. It has been the focus of researchers to find and develop Actinomycetes with special characters. Strain XJ-16 is a blue alkali-resistant filamentous bacterium with high antimicrobial activity isolated from saline-alkali land of Xinjiang. Based on the classification, the enzyme production, metabolite antibacterial activity, and antibacterial substance isolation of XJ-16 were explored. which showed that XJ-16 belongs to the blue group of Streptomyces sp, and it can secrete cellulase, lipase, urease, protease, catalase and oxidase during metabolism. In addition, the bacteriostatic substance secreted by the strain XJ-16 showed inhibitory effects against both Gram-positive and Gram-negative bacteria, as well as the yeast Candida albicans. Then it was found that the bacteriostasis produced by XJ-16 has strong tolerance to acid, weak tolerance to alkali, and easy to be inactivated. After tested by HPLC, the retention time of antimicrobial substance was 13.261 min. This study provides new research ideas and theoretical support for searching for new antibacterial compounds and further developing the blue alkaline Actinomycete XJ-16.
Collapse
Affiliation(s)
- Ke Jiang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ruoxuan Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xianglian Luo
- Liaoning Province Key Laboratory of Functional Cordyceps Militaris, Experimental Teaching Center, Shenyang Normal University, Shenyang, China
| | - Ting Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fangxu Xu
- Liaoning Province Key Laboratory of Functional Cordyceps Militaris, Experimental Teaching Center, Shenyang Normal University, Shenyang, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dianpeng Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
5
|
Dong CD, Tiwari A, Anisha GS, Chen CW, Singh A, Haldar D, Patel AK, Singhania RR. Laccase: A potential biocatalyst for pollutant degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120999. [PMID: 36608728 DOI: 10.1016/j.envpol.2023.120999] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In the continual march to a predominantly urbanized civilization, anthropogenic activities have increased scrupulously, industrialization have occurred, economic growth has increased, and natural resources are being exploited, causing huge waste management problems, disposal issues, and the evolution of several pollutants. In order to have a sustainable environment, these pollutants need to be removed and degraded. Bioremediation employing microorganisms or enzymes can be used to treat the pollutants by degrading and/or transforming the pollutants into different form which is less or non-toxic to the environment. Laccase is a diverse enzyme/biocatalyst belonging to the oxidoreductase group of enzymes produced by microorganisms. Due to its low substrate specificity and monoelectronic oxidation of substrates in a wide range of complexes, it is most commonly used to degrade chemical pollutants. For degradation of emerging pollutants, laccase can be efficiently employed; however, large-scale application needs reusability, thermostability, and operational stability which necessitated strategies like immobilization and engineering of robust laccase possessing desirable properties. Immobilization of laccase for bioremediation, and treatment of wastewater for degrading emerging pollutants have been focussed for sustainable development. Challenges of employing biocatalysts for these applications as well as engineering robust laccase have been highlighted in this study.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Ashutosh Tiwari
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Grace Sathyanesan Anisha
- Post-graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, 695014, Kerala, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Anusuiya Singh
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
6
|
Brugnari T, Braga DM, Dos Santos CSA, Torres BHC, Modkovski TA, Haminiuk CWI, Maciel GM. Laccases as green and versatile biocatalysts: from lab to enzyme market-an overview. BIORESOUR BIOPROCESS 2021; 8:131. [PMID: 38650295 PMCID: PMC10991308 DOI: 10.1186/s40643-021-00484-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Laccases are multi-copper oxidase enzymes that catalyze the oxidation of different compounds (phenolics and non-phenolics). The scientific literature on laccases is quite extensive, including many basic and applied research about the structure, functions, mechanism of action and a variety of biotechnological applications of these versatile enzymes. Laccases can be used in various industries/sectors, from the environmental field to the cosmetics industry, including food processing and the textile industry (dyes biodegradation and synthesis). Known as eco-friendly or green enzymes, the application of laccases in biocatalytic processes represents a promising sustainable alternative to conventional methods. Due to the advantages granted by enzyme immobilization, publications on immobilized laccases increased substantially in recent years. Many patents related to the use of laccases are available, however, the real industrial or environmental use of laccases is still challenged by cost-benefit, especially concerning the feasibility of producing this enzyme on a large scale. Although this is a compelling point and the enzyme market is heated, articles on the production and application of laccases usually neglect the economic assessment of the processes. In this review, we present a description of laccases structure and mechanisms of action including the different sources (fungi, bacteria, and plants) for laccases production and tools for laccases evolution and prediction of potential substrates. In addition, we both compare approaches for scaling-up processes with an emphasis on cost reduction and productivity and critically review several immobilization methods for laccases. Following the critical view on production and immobilization, we provide a set of applications for free and immobilized laccases based on articles published within the last five years and patents which may guide future strategies for laccase use and commercialization.
Collapse
Affiliation(s)
- Tatiane Brugnari
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil.
| | - Dayane Moreira Braga
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Camila Souza Almeida Dos Santos
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Bruno Henrique Czelusniak Torres
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Tatiani Andressa Modkovski
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Charles Windson Isidoro Haminiuk
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Giselle Maria Maciel
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| |
Collapse
|
7
|
Parab P, Khandeparker R. Xylanolytic enzyme consortia from Bacillus sp. NIORKP76 for improved biobleaching of kraft pulp. Bioprocess Biosyst Eng 2021; 44:2513-2524. [PMID: 34402971 DOI: 10.1007/s00449-021-02623-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
A cellulase-free xylanolytic enzyme consortia consisting of a xylanase, arabinofuranosidase, and acetyl xylan esterase produced by Bacillus sp. NIORKP76 isolate under solid-state fermentation was assessed for its bio-bleaching ability on kraft pulp. In the biobleaching analysis, the xylanase dose of 5 Ug-1 dry pulp denoted the optimum bleaching of pulp at 40 °C and pH 8.0 after 2 h of treatment. The reduction in kappa number of pre-treated hardwood pulp using xylanolytic enzyme consortium (XEC) was found to be ~ 55%, while solo xylanase could reduce the kappa number to 44-46%. In the case of chemical bagasse pulp, a reduction of ~ 27.5% and 19-20% was seen in kappa number using XEC and solo xylanase, respectively. Enzyme-treated pulp (HW and CB) showed a 50% reduction in hypochlorite consumption during the chlorine treatment. The current study results reveal the significant potential of xylanolytic enzyme consortium from Bacillus sp. NIORKP76 on the environmentally friendly bio-bleaching process.
Collapse
Affiliation(s)
- Pankaj Parab
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.,Department of Microbiology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Rakhee Khandeparker
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| |
Collapse
|
8
|
Meng Y, Zhao F, Jin X, Feng Y, Sun G, Lin J, Jia B, Li P. Performance Evaluation of Enzyme Breaker for Fracturing Applications under Simulated Reservoir Conditions. Molecules 2021; 26:molecules26113133. [PMID: 34073941 PMCID: PMC8197314 DOI: 10.3390/molecules26113133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/04/2023] Open
Abstract
Fracturing fluids are being increasingly used for viscosity development and proppant transport during hydraulic fracturing operations. Furthermore, the breaker is an important additive in fracturing fluid to extensively degrade the polymer mass after fracturing operations, thereby maximizing fracture conductivity and minimizing residual damaging materials. In this study, the efficacy of different enzyme breakers was examined in alkaline and medium-temperature reservoirs. The parameters considered were the effect of the breaker on shear resistance performance and sand-suspending performance of the fracturing fluid, its damage to the reservoir after gel breaking, and its gel-breaking efficiency. The experimental results verified that mannanase II is an enzyme breaker with excellent gel-breaking performance at medium temperatures and alkaline conditions. In addition, mannanase II did not adversely affect the shear resistance performance and sand-suspending performance of the fracturing fluid during hydraulic fracturing. For the same gel-breaking result, the concentration of mannanase II used was only one fifth of other enzyme breakers (e.g., mannanase I, galactosidase, and amylase). Moreover, the amount of residue and the particle size of the residues generated were also significantly lower than those of the ammonium persulfate breaker. Finally, we also examined the viscosity-reducing capability of mannanase II under a wide range of temperatures (104–158 °F) and pH values (7–8.5) to recommend its best-use concentrations under different fracturing conditions. The mannanase has potential for applications in low-permeability oilfield development and to maximize long-term productivity from unconventional oilwells.
Collapse
Affiliation(s)
- Yuling Meng
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China; (Y.M.); (F.Z.); (X.J.); (B.J.)
| | - Fei Zhao
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China; (Y.M.); (F.Z.); (X.J.); (B.J.)
| | - Xianwei Jin
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China; (Y.M.); (F.Z.); (X.J.); (B.J.)
| | - Yun Feng
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257029, China; (Y.F.); (G.S.); (J.L.)
| | - Gangzheng Sun
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257029, China; (Y.F.); (G.S.); (J.L.)
| | - Junzhang Lin
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257029, China; (Y.F.); (G.S.); (J.L.)
| | - Baolei Jia
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China; (Y.M.); (F.Z.); (X.J.); (B.J.)
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Piwu Li
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China; (Y.M.); (F.Z.); (X.J.); (B.J.)
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
- Correspondence: ; Tel.: +86-156-1571-5965
| |
Collapse
|
9
|
Angural S, Bala I, Kumar A, Kumar D, Jassal S, Gupta N. Bleach enhancement of mixed wood pulp by mixture of thermo-alkali-stable xylanase and mannanase derived through co-culturing of Alkalophilic Bacillus sp. NG-27 and Bacillus nealsonii PN-11. Heliyon 2021; 7:e05673. [PMID: 33553710 PMCID: PMC7855340 DOI: 10.1016/j.heliyon.2020.e05673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 04/23/2020] [Accepted: 12/03/2020] [Indexed: 02/01/2023] Open
Abstract
The Application of a combination of enzymes is the best alternative to reduce the use of chemicals in the paper industry. Bacillus sp. NG-27 and Bacillus nealsonii PN-11 are known to produce thermoalkali stable xylanse (X) and mannanase (M) respectively having potential for pulp biobleaching. The Present study, reports the production of a mixture of X + M by co-culturing of strains in SSF and standardizing its application for pulp biobleaching. Production of enzymes by co-cultivation in SSF was optimized by statistical methods. Substantial increase in the yield of enzymes; 3.61 fold of xylanase and 37.71 fold of mannanase was achieved. Application of enzyme cocktail for pulp biobleaching resulted in a 45.64% reduction of kappa number with 55 IU g-1odp of enzyme dose (xylanase:mannanase; 3:1) at pH 8.0 in 1h at 65 °C along with significant increase in brightness (11%) and whiteness (75%). The Same quality of paper as made up from chemical treated pulp can be made from enzyme-treated pulp with 30% less use of chlorine. Structural analysis of enzyme-treated pulp showed dissolution of hemicellulose as indicated by pores, cracks and increased roughness all over the surface. Cocktail of X + M produced economically in a single fermentation having all the requisite characteristics for pulp biobleaching is a highly suitable candidate for application in the pulp and paper industry.
Collapse
Affiliation(s)
- Steffy Angural
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Indu Bala
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Aditya Kumar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Deepak Kumar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sunena Jassal
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
10
|
Patel SKS, Gupta RK, Kim SY, Kim IW, Kalia VC, Lee JK. Rhus vernicifera Laccase Immobilization on Magnetic Nanoparticles to Improve Stability and Its Potential Application in Bisphenol A Degradation. Indian J Microbiol 2020; 61:45-54. [PMID: 33505092 DOI: 10.1007/s12088-020-00912-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
In the present study, Rhus vernicifera laccase (RvLac) was immobilized through covalent methods on the magnetic nanoparticles. Fe2O3 and Fe3O4 nanoparticles activated by 3-aminopropyltriethoxysilane followed with glutaraldehyde showed maximum immobilization yields and relative activity up to 81.4 and 84.3% at optimum incubation and pH of 18 h and 5.8, respectively. The maximum RvLac loading of 156 mg/g of support was recorded on Fe2O3 nanoparticles. A higher optimum pH and temperature of 4.0 and 45 °C were noted for immobilized enzyme compared to values of 3.5 and 40 °C for free form, respectively. Immobilized RvLac exhibited better relative activity profiles at various pH and temperature ranges. The immobilized enzyme showed up to 16-fold improvement in the thermal stability, when incubated at 60 °C, and retained up to 82.9% of residual activity after ten cycles of reuses. Immobilized RvLac exhibited up to 1.9-fold higher bisphenol A degradation efficiency potential over free enzyme. Previous reports have demonstrated the immobilization of RvLac on non-magnetic supports. This study has demonstrated that immobilization of RvLac on magnetic nanoparticles is very efficient especially for achieving high loading, better pH and temperature profiles, and thermal- and solvents-stability, high reusability, and higher degradation of bisphenol A.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Rahul K Gupta
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Sang-Yong Kim
- Department of Food Science and Biotechnology, Shin-Ansan University, Ansan, 15435 Republic of Korea
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Vipin C Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| |
Collapse
|
11
|
Lignolytic and hemicellulolytic enzyme cocktail production from Bacillus tequilensis LXM 55 and its application in pulp biobleaching. Bioprocess Biosyst Eng 2020; 43:2219-2229. [DOI: 10.1007/s00449-020-02407-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
|