1
|
Duan X, Luan S. Efficient secreted expression of natural intracellular β-galactosidase from Bacillus aryabhattai via non-classical protein secretion pathway in Bacillus subtilis. Int J Biol Macromol 2023; 248:125758. [PMID: 37453640 DOI: 10.1016/j.ijbiomac.2023.125758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
In this study, the natural intracellular β-galactosidase (lacZBa) from Bacillus aryabhattai was expressed extracellularly in Bacillus subtilis. Sec and Tat signal peptides from different secretion pathways were incorporated to facilitate extracellular secretion of lacZBa, resulting in a yield of only 0.54 U/mL. Interestingly, it was discovered that lacZBa could be efficiently expressed and secreted in B. subtilis via a non-classical secretory pathway without the need for a signal peptide. The extracellular activity and secretion ratio were 5.3 U/mL and 65 %, respectively. Compared to E. coli, the expression of lacZBa in B. subtilis resulted in increased acid resistance and higher pH stability and thermostability, with a 1.7-fold increase in half-life at 50 °C and pH 6.0. Additionally, we combined single-factor experiments and response surface methodology to enhance extracellular expression of β-galactosidase in shake-flasks. The resulting optimal medium contained 4.46 % glucose, 1.47 % corn steep liquor, 1.5 % beef extract, 0.82 % CaCl2, and 0.1 % MgSO4. Under optimal conditions, the yield of extracellularly secreted β-galactosidase at the shake flask level was 17.41 U/mL, representing a 32.2-fold increase in initial extracellular enzyme activity. This study represents the first successful report of natural intracellular β-galactosidase being expressed through the non-classical secretory pathway in B. subtilis.
Collapse
Affiliation(s)
- Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Shuyue Luan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
2
|
Qiu Y, Lei P, Wang R, Sun L, Luo Z, Li S, Xu H. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnol Adv 2023; 64:108125. [PMID: 36870581 DOI: 10.1016/j.biotechadv.2023.108125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
As the two most widely used Kluyveromyces yeast, Kluyveromyces marxianus and K. lactis have gained increasing attention as microbial chassis in biocatalysts, biomanufacturing and the utilization of low-cost raw materials owing to their high suitability to these applications. However, due to slow progress in the development of molecular genetic manipulation tools and synthetic biology strategies, Kluyveromyces yeast cell factories as biological manufacturing platforms have not been fully developed. In this review, we provide a comprehensive overview of the attractive characteristics and applications of Kluyveromyces cell factories, with special emphasis on the development of molecular genetic manipulation tools and systems engineering strategies for synthetic biology. In addition, future avenues in the development of Kluyveromyces cell factories for the utilization of simple carbon compounds as substrates, the dynamic regulation of metabolic pathways, and for rapid directed evolution of robust strains are proposed. We expect that more synthetic systems, synthetic biology tools and metabolic engineering strategies will adapt to and optimize for Kluyveromyces cell factories to achieve green biofabrication of multiple products with higher efficiency.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengshan Luo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
3
|
Ambika, Kumar V, Chandra D, Thakur V, Sharma U, Singh D. Depolymerization of lignin using laccase from Bacillus sp. PCH94 for production of valuable chemicals: A sustainable approach for lignin valorization. Int J Biol Macromol 2023; 234:123601. [PMID: 36775222 DOI: 10.1016/j.ijbiomac.2023.123601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Lignin is the most abundant aromatic polymer in nature, and its depolymerization offers excellent opportunities to develop renewable aromatic chemicals. In the present study, Bacillus sp. PCH94 was investigated for laccase production and lignin depolymerization. Maximum production of laccase enzyme was achieved within 6.0 h at 50 °C on a natural lignocellulosic substrate. Furthermore, Bacillus sp. PCH94 was used to bioconvert lignin dimeric and polymeric substrates, validated using FT-IR, NMR (1H, 13C), and LCMS. Genome mining of Bacillus sp. PCH94 revealed laccase gene (lacBl) as multicopper oxidase (spore coat CotA). Further, lacBl from Bacillus sp. PCH94 was cloned, expressed, and kinetically characterized. LacBl enzyme showed activity for substrates ABTS (40.64 IU/mg), guaiacol (5.43 IU/mg), and DMP (11.93 IU/mg). The LacBl was active in higher temperatures (10 to 100 °C) and showed a half-life of 36 and 27 h at 50 and 60 °C, respectively. The purified LacBl was able to depolymerize kraft lignin into valuable products (ferulic acid and acetovanillone), which have applications in the pharmaceutical and food industries. Overall, the current study demonstrated the role of bacterial laccase in the depolymerization of lignin and opened a promising prospect for the green production of valuable compounds from recalcitrant lignin.
Collapse
Affiliation(s)
- Ambika
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Vijay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India.
| | - Devesh Chandra
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Vikas Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh- 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
4
|
Kalathinathan P, Sain A, Pulicherla K, Kodiveri Muthukaliannan G. A Review on the Various Sources of β-Galactosidase and Its Lactose Hydrolysis Property. Curr Microbiol 2023; 80:122. [PMID: 36862237 DOI: 10.1007/s00284-023-03220-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
β-Galactosidase is a glycoside hydrolase enzyme that possesses both hydrolytic and transgalactosylation properties and has several benefits and advantages in the food and dairy industries. The catalytic process of β-galactosidase involves the transfer of a sugar residue from a glycosyl donor to an acceptor via a double-displacement mechanism. Hydrolysis prevails when water acts as an acceptor, resulting in the production of lactose-free products. Transgalactosylation prevails when lactose acts as an acceptor, resulting in the production of prebiotic oligosaccharides. β-Galactosidase is also obtained from many sources including bacteria, yeast, fungi, plants, and animals. However, depending on the origin of the β-galactosidase, the monomer composition and their bonds may differ, thereby influencing their properties and prebiotic efficacy. Thus, the increasing demand for prebiotics in the food industry and the search for new oligosaccharides have compelled researchers to search for novel sources of β-galactosidase with diverse properties. In this review, we discuss the properties, catalytic mechanisms, various sources and lactose hydrolysis properties of β-galactosidase.
Collapse
Affiliation(s)
- Pooja Kalathinathan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Avtar Sain
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | | |
Collapse
|
5
|
Singh TP, Arora S, Sarkar M. Yak milk and milk products: functional, bioactive constituents and therapeutic potential. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Vergara SC, Leiva MJ, Mestre MV, Vazquez F, Nally MC, Maturano YP. Non-saccharomyces yeast probiotics: revealing relevance and potential. FEMS Yeast Res 2023; 23:foad041. [PMID: 37777839 DOI: 10.1093/femsyr/foad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Abstract
Non-Saccharomyces yeasts are unicellular eukaryotes that play important roles in diverse ecological niches. In recent decades, their physiological and morphological properties have been reevaluated and reassessed, demonstrating the enormous potential they possess in various fields of application. Non-Saccharomyces yeasts have gained relevance as probiotics, and in vitro and in vivo assays are very promising and offer a research niche with novel applications within the functional food and nutraceutical industry. Several beneficial effects have been described, such as antimicrobial and antioxidant activities and gastrointestinal modulation and regulation functions. In addition, several positive effects of bioactive compounds or production of specific enzymes have been reported on physical, mental and neurodegenerative diseases as well as on the organoleptic properties of the final product. Other points to highlight are the multiomics as a tool to enhance characteristics of interest within the industry; as well as microencapsulation offer a wide field of study that opens the niche of food matrices as carriers of probiotics; in turn, non-Saccharomyces yeasts offer an interesting alternative as microencapsulating cells of various compounds of interest.
Collapse
Affiliation(s)
- Silvia Cristina Vergara
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - María José Leiva
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - María Victoria Mestre
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Fabio Vazquez
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
| | - María Cristina Nally
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Yolanda Paola Maturano
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| |
Collapse
|
7
|
Thakur V, Kumar V, Kumar V, Singh D. Xylooligosaccharides production using multi-substrate specific xylanases secreted by a psychrotolerant Paenibacillus sp. PCH8. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
8
|
Nag D, Goel A, Padwad Y, Singh D. In Vitro Characterisation Revealed Himalayan Dairy Kluyveromyces marxianus PCH397 as Potential Probiotic with Therapeutic Properties. Probiotics Antimicrob Proteins 2022; 15:761-773. [PMID: 35040023 DOI: 10.1007/s12602-021-09874-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/27/2022]
Abstract
Recently, probiotics have gained much attention for their roles against various clinical conditions. Obesity is a worldwide health problem that triggers various other major complications like type 2 diabetes (T2D) and cancers, including colorectal cancer (CRC). Earlier, Kluyveromyces marxianus PCH397 isolated from yak (Bos grunniens) milk has been characterised by us for its efficient β-galactosidase-producing ability, an important probiotic property. In the present study, yeast PCH397 has been evaluated for various parameters for its probiotic use. PCH397 exhibited tolerance to GI tract conditions (low pH, pancreatin, pepsin, and bile salts) with 78 to 99% survivability, possessed around 81% cell surface hydrophobicity, and 96% autoaggregation ability. The cell-free extract (CFE) and cell-free supernatant (CFS) from PCH397 improved insulin sensitisation by enhancing 2-NBDG (a glucose analogue) uptake in 3T3-L1 adipocytes, an approach useful in T2D treatment. They also exhibited lower intracellular lipid accumulation, triglyceride storage, and reactive oxygen species in differentiated adipocytes, indicating their anti-adipogenic ability. Also, CFE and intact cells (ICs) exhibited 73.33 ± 1.11% and 34.88 ± 2.80% DPPH radical scavenging activity, respectively. Furthermore, CFS showed a cytotoxic effect on SW-480 colorectal cancer (CRC) cells and induced the cell cycle phase arrest after 24 h of treatment. In conclusion, these results demonstrate that K. marxianus PCH397 could be used as a potential probiotic yeast and presents a therapeutic potential against obesity, T2D, and colon cancer.
Collapse
Affiliation(s)
- Deepika Nag
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India
| | - Abhishek Goel
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Yogendra Padwad
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|