1
|
de Caro T, Toro RG, Cassone L, Barbaccia FI, Zaratti C, Colasanti IA, La Russa MF, Macchia A. Functionalization of Artwork Packaging Materials Utilizing Ag-Doped TiO 2 and ZnO Nanoparticles. Molecules 2024; 29:3712. [PMID: 39125115 PMCID: PMC11314615 DOI: 10.3390/molecules29153712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Most of the artworks stored in museums are often kept in inappropriate climatic and environmental conditions that facilitate the formation and growth of microorganisms, such as fungi, which are responsible for many types of biodegradation phenomena. To mitigate and prevent these deteriorative processes, functionalized packaging materials can be used for the storage and handling of artworks. The aim of this study was to develop a potential anti-biodeterioration coating suitable for packaging purposes. TiO2 and ZnO doped with different amounts of Ag (0.5 wt%, 1 wt%, and 3 wt%) were synthesized and dispersed in polyvinyl alcohol (PVA) and acrylic resin (Paraloid B72), then applied on different types of packaging materials (cellulose and the high-density spunbound polyethylene fiber Tyvek®, materials that are frequently used as packaging in museums). Analytical investigations (SEM/EDS, Raman, FTIR, and XRD) were employed to assess dispersion on the packaging material. Furthermore, resistance against biodeteriogens was assessed using Cladosporium sp., a bioluminometer, to define the biocidal efficacy.
Collapse
Affiliation(s)
- Tilde de Caro
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, Strada Provinciale 35 d n. 9, 00010 Rome, Italy;
| | - Roberta Grazia Toro
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, Strada Provinciale 35 d n. 9, 00010 Rome, Italy;
| | - Luminita Cassone
- Youth in Conservation of Cultural Heritage (YOCOCU APS), Via T. Tasso 108, 00185 Rome, Italy; (L.C.); (I.A.C.); (A.M.)
| | - Francesca Irene Barbaccia
- Youth in Conservation of Cultural Heritage (YOCOCU APS), Via T. Tasso 108, 00185 Rome, Italy; (L.C.); (I.A.C.); (A.M.)
- Department of Technological Innovation Engineering, Digital Technologies for Industry 4.0, International Telematic University Uninettuno, Corso Vittorio Emanuele II 39, 00186 Rome, Italy
| | | | - Irene Angela Colasanti
- Youth in Conservation of Cultural Heritage (YOCOCU APS), Via T. Tasso 108, 00185 Rome, Italy; (L.C.); (I.A.C.); (A.M.)
| | - Mauro Francesco La Russa
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Via Pietro Bucci, Arcavacata, 87036 Rende, Italy;
| | - Andrea Macchia
- Youth in Conservation of Cultural Heritage (YOCOCU APS), Via T. Tasso 108, 00185 Rome, Italy; (L.C.); (I.A.C.); (A.M.)
- Lab4Green, Via T. Tasso 108, 00185 Rome, Italy;
| |
Collapse
|
2
|
Masoudi M, Mashreghi M, Zenhari A, Mashreghi A. Combinational antimicrobial activity of biogenic TiO 2 NP/ZnO NPs nanoantibiotics and amoxicillin-clavulanic acid against MDR-pathogens. Int J Pharm 2024; 652:123821. [PMID: 38242259 DOI: 10.1016/j.ijpharm.2024.123821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The development of effective strategies against multidrug-resistant (MDR) pathogens is an urgent need in modern medicine. Nanoantibiotics (nABs) offer a new hope in countering the surge of MDR-pathogens. The aim of the current study was to evaluate the antibacterial activity of two attractive nABs, TiO2 NPs and ZnO NPs, and their performance in improving the antimicrobial activity of defined antibiotics (amoxicillin-clavulanic acid, amox-clav) against MDR-pathogens. The nABs were synthesized using a green method. The physicochemical characteristics of the synthesized nanoparticles were determined using standard methods. The results showed the formation of pure anatase TiO2 NPs and hexagonal ZnO NPs with an average particle size of 38.65 nm and 57.87 nm, respectively. The values of zeta potential indicated the high stability of the samples. At 8 mg/mL, both nABs exhibited 100 % antioxidant activity, while ZnO showed significantly higher activity at lower concentrations. The antibiofilm assay showed that both nABs could inhibit the formation of biofilms of Acinetobacter baumannii 80 and Escherichia coli 27G (MDR-isolates). However, ZnO NPs showed superior antibiofilm activity (100 %) against E. coli 27G. The MIC values were determined to be 8 (1), 2 (2), and 4 (4) mg/mL for amox-clav, TiO2 NPs, and ZnO NPs against A. baumannii 80 (E. coli 27G), respectively. The results showed that both nABs had synergistically enhanced antibacterial performance in combination with amox-clav. Specifically, an 8-fold reduction in MIC values of antibiotics was observed when they were combined with nABs. These findings highlight the potential of TiO2 NPs and ZnO NPs as effective nanoantibiotics against MDR-pathogens. The synergistic effect observed when combining nABs with antibiotics suggests a promising approach for combating antibiotic resistance. Further research and development in this area could lead to the development of more effective treatment strategies against MDR infections.
Collapse
Affiliation(s)
- Mina Masoudi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Nano Research Center, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Alireza Zenhari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirala Mashreghi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Rathore C, Yadav VK, Gacem A, AbdelRahim SK, Verma RK, Chundawat RS, Gnanamoorthy G, Yadav KK, Choudhary N, Sahoo DK, Patel A. Microbial synthesis of titanium dioxide nanoparticles and their importance in wastewater treatment and antimicrobial activities: a review. Front Microbiol 2023; 14:1270245. [PMID: 37908543 PMCID: PMC10613736 DOI: 10.3389/fmicb.2023.1270245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
Nanotechnology (NT) and nanoparticles (NPs) have left a huge impact on every field of science today, but they have shown tremendous importance in the fields of cosmetics and environmental cleanup. NPs with photocatalytic effects have shown positive responses in wastewater treatment, cosmetics, and the biomedical field. The chemically synthesized TiO2 nanoparticles (TiO2 NPs) utilize hazardous chemicals to obtain the desired-shaped TiO2. So, microbial-based synthesis of TiO2 NPs has gained popularity due to its eco-friendly nature, biocompatibility, etc. Being NPs, TiO2 NPs have a high surface area-to-volume ratio in addition to their photocatalytic degradation nature. In the present review, the authors have emphasized the microbial (algae, bacterial, fungi, and virus-mediated) synthesis of TiO2 NPs. Furthermore, authors have exhibited the importance of TiO2 NPs in the food sector, automobile, aerospace, medical, and environmental cleanup.
Collapse
Affiliation(s)
- Chandani Rathore
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Laxmangarh, Rajasthan, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Siham K. AbdelRahim
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Laxmangarh, Rajasthan, India
| | - Rajendra Singh Chundawat
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Laxmangarh, Rajasthan, India
| | - G. Gnanamoorthy
- Department of Inorganic Chemistry, University of Madras, Chennai, Tamilnadu, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
4
|
Zhang C, Zhang Q, Zhao Y, Dong D, Huang L. Determination of Titanium (IV) Oxide Nanoparticles Released from Textiles by Single Particle – Inductively Coupled Plasma – Mass Spectrometry (SP-ICP-MS). ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2195186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Chaoying Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Qin Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yingchun Zhao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Dianquan Dong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Longjiang Huang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|