1
|
Talib WH, Baban MM, Bulbul MF, Al-Zaidaneen E, Allan A, Al-Rousan EW, Ahmad RHY, Alshaeri HK, Alasmari MM, Law D. Natural Products and Altered Metabolism in Cancer: Therapeutic Targets and Mechanisms of Action. Int J Mol Sci 2024; 25:9593. [PMID: 39273552 PMCID: PMC11394730 DOI: 10.3390/ijms25179593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer is characterized by uncontrolled cell proliferation and the dysregulation of numerous biological functions, including metabolism. Because of the potential implications of targeted therapies, the metabolic alterations seen in cancer cells, such as the Warburg effect and disruptions in lipid and amino acid metabolism, have gained attention in cancer research. In this review, we delve into recent research examining the influence of natural products on altered cancer metabolism. Natural products were selected based on their ability to target cancer's altered metabolism. We identified the targets and explored the mechanisms of action of these natural products in influencing cellular energetics. Studies discussed in this review provide a solid ground for researchers to consider natural products in cancer treatment alone and in combination with conventional anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Media Mohammad Baban
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Mais Fuad Bulbul
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Esraa Al-Zaidaneen
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Aya Allan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Eiman Wasef Al-Rousan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Rahaf Hamed Yousef Ahmad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Heba K Alshaeri
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 22233, Saudi Arabia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| |
Collapse
|
2
|
Imran M, Saeed F, Alsagaby SA, Imran A, Ahmad I, El Ghorab AH, Abdelgawad MA, Qaisrani TB, Mehmood T, Umar M, Mumtaz MA, Sajid A, Manzoor Q, Hussain M, Al Abdulmonem W, Al Jbawi E. Curcumin: recent updates on gastrointestinal cancers. CYTA - JOURNAL OF FOOD 2023; 21:502-513. [DOI: 10.1080/19476337.2023.2245009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/26/2023] [Indexed: 01/04/2025]
Affiliation(s)
- Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Ali Imran
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ishtiaque Ahmad
- Department of Dairy Technology, FAPT, Ravi Campus, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Ahmad H. El Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Tahira Batool Qaisrani
- Department of Agricultural Engineering and Technology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Tahir Mehmood
- Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maryam Umar
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | | | - Arfaa Sajid
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Qaisar Manzoor
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | |
Collapse
|
3
|
Samaddar S, Buckles D, Saha S, Zhang Q, Bansal A. Translating Molecular Biology Discoveries to Develop Targeted Cancer Interception in Barrett's Esophagus. Int J Mol Sci 2023; 24:11318. [PMID: 37511077 PMCID: PMC10379200 DOI: 10.3390/ijms241411318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is a rapidly increasing lethal tumor. It commonly arises from a metaplastic segment known as Barrett's esophagus (BE), which delineates the at-risk population. Ample research has elucidated the pathogenesis of BE and its progression from metaplasia to invasive carcinoma; and multiple molecular pathways have been implicated in this process, presenting several points of cancer interception. Here, we explore the mechanisms of action of various agents, including proton pump inhibitors, non-steroidal anti-inflammatory drugs, metformin, and statins, and explain their roles in cancer interception. Data from the recent AspECT trial are discussed to determine how viable a multipronged approach to cancer chemoprevention would be. Further, novel concepts, such as the repurposing of chemotherapeutic drugs like dasatinib and the prevention of post-ablation BE recurrence using itraconazole, are discussed.
Collapse
Affiliation(s)
- Sohini Samaddar
- Department of Internal Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Daniel Buckles
- Department of Gastroenterology and Hepatology, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Souvik Saha
- Department of Internal Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Qiuyang Zhang
- Center for Esophageal Diseases, Department of Medicine, Baylor University Medical Center, Dallas, TX 75246, USA
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, TX 75246, USA
| | - Ajay Bansal
- Department of Gastroenterology and Hepatology, University of Kansas Health System, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Wang S, Gao X, Li J, Wei S, Shao Y, Yin Y, Zhang D, Tang M. The anticancer effects of curcumin and clinical research progress on its effects on esophageal cancer. Front Pharmacol 2022; 13:1058070. [PMID: 36386215 PMCID: PMC9650137 DOI: 10.3389/fphar.2022.1058070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 05/14/2025] Open
Abstract
Esophageal cancer (EC) is a common tumor of the gastrointestinal system and a major threat to human health. The etiology and incidence of EC vary depending on the type of pathology. Owing to the unique physiological structure of the esophagus and the poor biological behavior of EC, the treatment modalities available are limited, and the prognosis of patients is relatively poor. Curcumin is a type of natural phytochemical belonging to the class of phenolic compounds. It exerts favorable anticancer effects on various cancers. A growing body of evidence indicates that curcumin suppresses tumor development and progression by inhibiting tumor cell proliferation, invasion, and migration, thus inducing apoptosis, regulating microRNA expression, reversing multidrug resistance, and inducing sensitivity to the therapeutic effect of chemoradiotherapy. Multiple cellular molecules, growth factors, and genes encoding proteins participating in different signaling pathways interact with each other to contribute to the complex and orderly anticancer effect. The efficacy and safety of curcumin have been established in preclinical studies for EC and clinical trials for other cancers. However, the low bioavailability of curcumin limits its clinical application. Therefore, the modification of curcumin analogs, the combination of curcumin with other drugs or therapies, and the use of novel nanocarriers have been widely investigated to improve the clinical effects of curcumin in EC.
Collapse
Affiliation(s)
- Shimeng Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shixiong Wei
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yifeng Shao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yipeng Yin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
He T, Qiao S, Ma C, Peng Z, Wu Z, Ma C, Han L, Deng Q, Zhang T, Zhu Y, Pan G. FEK self-assembled peptide hydrogels facilitate primary hepatocytes culture and pharmacokinetics screening. J Biomed Mater Res B Appl Biomater 2022; 110:2015-2027. [PMID: 35301798 DOI: 10.1002/jbm.b.35056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/11/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022]
Abstract
A FEFEFKFK (FEK, F, phenylalaninyl; E, glutamyl; K, lysinyl)-based self-assembling peptide hydrogel (FEK-SAPH) was developed to replace sandwich culture (SC) for improved culture of primary hepatocytes in vitro. Under neutral conditions, FEK self-assembles to form β-sheet nanofibers, which in turn form FEK-SAPH. For the culture of rat primary hepatocytes (RPH), the use of FEK-SAPH simplified operation steps and promoted excellent cell-cell interactions while maintaining the SC-related RPH polarity trend. Compared with SC, FEK-SAPH cultured RPH for 14 days, the bile duct network was formed, the secretion of albumin and urea was improved, and the metabolic clearance rate based on cytochrome P450 (CYPs) was comparable. In FEK-SAPH culture, the expression level of the biliary efflux transporter bile salt export pump increased by 230.7%, while the biliary excretion index value of deuterium-labeled sodium taurocholate (d8-TCA) differed slightly from the SC value (72% and 77%, respectively, p = .0195). The inhibitory effect of cholestasis drugs on FEK-SAPH was significantly higher than that of SC. In FEK-SAPH, hepatoprotective drugs were more effective in antagonizing hepatotoxicity induced by lithocholic acid (LCA). FEK-SAPH cultured RPH with hepatoprotective drugs can better recover from LCA-induced damage. In summary, FEK-SAPH can be used as a substitute for SC for pharmacokinetic screening to evaluate the drug absorption, disposition, metabolism, excretion, and toxicity (ADMET) in hepatocytes.
Collapse
Affiliation(s)
- Ting He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shida Qiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoliang Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenhui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiangqiang Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tianwei Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yishen Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Li J, Zhang C, Li L, Hu X, Jia Y, Huang Y, Lyu T, Wang X, Guo X. Folate deficiency enhances the in vitro genotoxicity of bile acids in human colon and liver cells. Mutagenesis 2021; 37:34-43. [PMID: 34791379 DOI: 10.1093/mutage/geab041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/14/2021] [Indexed: 11/13/2022] Open
Abstract
Obese subjects have a high baseline of genotoxic stress, but the underlying mechanism is poorly understood. Given that obesity is associated with high bile acids (BA) and low folate, we aimed to determine the interactive effect of folate deficient or supplementation to the genotoxicity and cytotoxicity of BA in human colon and liver cells. NCM460 and L-02 cells were cultured in folate deficient (22.6 nM) and replete (2260 nM) RPMI 1640 medium with or without 50 μM deoxycholic acid (DCA) or lithocholic acid (LCA) for 7 days. Moreover, these cells were cultured in folate supplemented (5.65, 11.3 and 22.6 μM) and standard (2.26 μM) medium with 200 μM DCA or LCA for 7 days. Genotoxicity and cytotoxicity were measured using the cytokinesis-block micronucleus cytome assay. Our results showed that under folate-replete condition, 50 μM DCA or LCA significantly increased the rate of micronuclei in NCM460 and L-02 cells. Significantly, the micronuclei-inducing effect of 50 μM DCA or LCA was further enhanced by folate deficiency. Interestingly, folate supplementation exerted a dose-dependent manner to significantly decrease the rates of micronuclei, nucleoplasmic bridges, nuclear buds, apoptosis and necrosis induced by 200 μM DCA or LCA in NCM460 and L-02 cells. In conclusion, the genotoxicity of moderate BA (50 μM) was exacerbated by folate deficiency and folate supplementation could efficiently protect cells against the genotoxicity and cytotoxicity of high BA (200 μM).
Collapse
Affiliation(s)
- Jianfei Li
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Cheng Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Lingzhi Li
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Xueqin Hu
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Yizhen Jia
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Yanan Huang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Ting Lyu
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Xu Wang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China.,Yunnan Environmental Mutagen Society, Kunming, Yunnan, China
| | - Xihan Guo
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China.,Yunnan Environmental Mutagen Society, Kunming, Yunnan, China
| |
Collapse
|
7
|
Alkhayyat M, Kumar P, Sanaka KO, Thota PN. Chemoprevention in Barrett's esophagus and esophageal adenocarcinoma. Therap Adv Gastroenterol 2021; 14:17562848211033730. [PMID: 34434254 PMCID: PMC8381453 DOI: 10.1177/17562848211033730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/29/2021] [Indexed: 02/04/2023] Open
Abstract
There has been a dramatic increase in the incidence of Barrett's esophagus and esophageal adenocarcinoma over the past several decades with a continued rise expected in the future. Several strategies have been developed for screening and surveillance of patients with Barrett's esophagus and endoscopic treatment of Barrett's associated dysplasia and early esophageal cancer; however, they have not made a substantial impact on the incidence of cancer. Herein, chemoprevention becomes an attractive idea for reducing the incidence of cancer in Barrett's patients. Several agents appear promising in preclinical and observational studies but very few have been evaluated in randomized controlled trials. Strongest evidence to date is available for proton-pump inhibitors and Aspirin that have been evaluated in a large randomized controlled trial. Other agents such as statins, metformin, ursodeoxycholic acid, and dietary supplements have insufficient evidence for chemoprevention in Barrett's patients.
Collapse
Affiliation(s)
- Motasem Alkhayyat
- Department of Internal Medicine, Cleveland
Clinic, Cleveland, OH, USA
| | - Prabhat Kumar
- Department of Gastroenterology and Hepatology,
Cleveland Clinic, Cleveland, OH, USA
| | - Krishna O. Sanaka
- Department of Gastroenterology and Hepatology,
Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
8
|
Peng D, Zaika A, Que J, El-Rifai W. The antioxidant response in Barrett's tumorigenesis: A double-edged sword. Redox Biol 2021; 41:101894. [PMID: 33621787 PMCID: PMC7907897 DOI: 10.1016/j.redox.2021.101894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is the dominant form of esophageal malignancies in the United States and other industrialized countries. The incidence of EAC has been rising rapidly during the past four decades. Barrett's esophagus (BE) is the main precancerous condition for EAC, where a metaplastic columnar epithelium replaces normal squamous mucosa of the lower esophagus. The primary risk factor for BE and EAC are chronic gastroesophageal reflux disease (GERD), obesity and smoking. During the BE-dysplasia-EAC sequence, esophageal cells are under a tremendous burden of accumulating reactive oxygen species (ROS) and oxidative stress. While normal cells have intact antioxidant machinery to maintain a balanced anti-tumorigenic physiological response, the antioxidant capacity is compromised in neoplastic cells with a pro-tumorigenic development antioxidant response. The accumulation of ROS, during the neoplastic progression of the GERD-BE-EAC sequence, induces DNA damage, lipid peroxidation and protein oxidation. Neoplastic cells adapt to oxidative stress by developing a pro-tumorigenic antioxidant response that keeps oxidative damage below lethal levels while promoting tumorigenesis, progression, and resistance to therapy. In this review, we will summarize the recent findings on oxidative stress in tumorigenesis in the context of the GERD-BE-EAC process. We will discuss how EAC cells adapt to increased ROS. We will review APE1 and NRF2 signaling mechanisms in the context of EAC. Finally, we will discuss the potential clinical significance of applying antioxidants or NRF2 activators as chemoprevention and NRF2 inhibitors in treating EAC patients.
Collapse
Affiliation(s)
- Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Alexander Zaika
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, USA
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
| |
Collapse
|
9
|
Asgharpour M, Alirezaei A. Herbal antioxidants in dialysis patients: a review of potential mechanisms and medical implications. Ren Fail 2021; 43:351-361. [PMID: 33593237 PMCID: PMC7894453 DOI: 10.1080/0886022x.2021.1880939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The consumption of exogenous antioxidants isolated from herbal extracts has shown beneficial effects on ameliorating dialysis-related complications through debilitating oxidative stress and inflammatory process. Many clinical studies available in public databases have reported the improved consequences of dialysis in patients supplemented with herbal antioxidants. Exploration of such data offers great possibilities for gaining insights into the potential mechanisms and medical implications of herbal antioxidants. In this work, the mechanisms and implications of some famous bioactive substances including silymarin, curcumin, resveratrol, emodin, and quercetin on the consequences of dialysis in chronic kidney disease (CKD) patients were explored. The protective features of silymarin are due to the flavonoid complex silybin. Curcumin is an active element from the root of curcuma longa with extensive beneficial properties, including antioxidant, anti-inflammatory activity, and inhibitory effects on cell apoptosis. Resveratrol can reduce the oxidative stress by neutralization of free radicals. Emodin is known as a natural anthraquinone derivative isolated from Chinese herbs. Finally, quercetin has been reported to exhibit several properties including antioxidant, anti-diabetic, analgesic, antihistaminic, antiviral, cholesterol reducer, and renal hemodynamic modulator. However, potential mechanisms and medical implications of the aforementioned herbal antioxidants seem to be more complicated, that is, more studies are required in this field.
Collapse
Affiliation(s)
- Masoumeh Asgharpour
- Department of Nephrology, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Amirhesam Alirezaei
- Department of Nephrology, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Snider EJ, Kaz AM, Inadomi JM, Grady WM. Chemoprevention of esophageal adenocarcinoma. Gastroenterol Rep (Oxf) 2020; 8:253-260. [PMID: 32843972 PMCID: PMC7434588 DOI: 10.1093/gastro/goaa040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is a major cause of cancer-related death, particularly in Western populations, and is rapidly rising in Asian populations at this time. Virtually all EACs develop from the precursor lesion Barrett's esophagus (BE), which is the most significant risk factor for EAC. However, the rates of progression from BE to EAC are low and patients with BE are asymptomatic. Thus, any strategy for EAC prevention must carry a low risk of harm in order to be clinically useful. Since current EAC-screening and BE-surveillance methods carry some procedural risk and are burdensome, there is an opportunity for chemoprevention, i.e. medications or dietary factors that may prevent BE from progressing to EAC. A variety of candidate chemoprevention therapies have been assessed to date. Proton-pump inhibitors (PPIs) are the best studied and have modest EAC-chemoprevention efficacy in BE patients, with a recent randomized trial showing that high-dose PPI may be more effective than low-dose PPI. Aspirin and other non-steroidal anti-inflammatory drugs have moderate quality observational and randomized-trial evidence for preventing progression of BE to EAC, but their risks for harm have precluded their routine clinical use. Other therapies (statins, metformin, female sex hormones) generally do not have strong evidence to support their use in EAC chemoprevention. Although progress has been made in this field, there is still a need for more effective and safe chemoprevention therapies for EAC.
Collapse
Affiliation(s)
- Erik J Snider
- Division of Gastroenterology, Department of Internal Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew M Kaz
- Division of Gastroenterology, Department of Internal Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Gastroenterology Section, VA Puget Sound Health Care System, Seattle, WA, USA
| | - John M Inadomi
- Division of Gastroenterology, Department of Internal Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - William M Grady
- Division of Gastroenterology, Department of Internal Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
11
|
Tse C, Warner A, Farook R, Cronin JG. Phytochemical Targeting of STAT3 Orchestrated Lipid Metabolism in Therapy-Resistant Cancers. Biomolecules 2020; 10:biom10081118. [PMID: 32731620 PMCID: PMC7464013 DOI: 10.3390/biom10081118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Lipids are critical for maintaining homeostasis and cellular metabolism. However, the dysregulation of lipid metabolism contributes to the pathogenesis of chronic inflammatory diseases and is a hallmark of several cancer types. Tumours exist in a microenvironment of poor vascularization-depleted oxygen and restricted nutrients. Under these conditions, tumours have been shown to increasingly depend on the metabolism of fatty acids for sustained proliferation and survival. Signal transducer and activator of transcription 3 (STAT3) plays a key role in cellular processes such as cell growth, apoptosis and lipid metabolism. Aberrant STAT3 activity, as seen in several cancer types, is associated with tumour progression and malignancy, in addition to propagating crosstalk between tumour cells and the microenvironment. Furthermore, STAT3-regulated lipid metabolism is critical for cancer stem cell self-renewal and therapy resistance. Plant-derived compounds known as phytochemicals are a potential source for novel cancer therapeutic drugs. Dietary phytochemicals are known to modulate key cellular signalling pathways involved in lipid homeostasis and metabolism, including the STAT3 signalling pathways. Targeting STAT3 orchestrated lipid metabolism has shown therapeutic promise in human cancer models. In this review, we summarize the antitumour activity of phytochemicals with an emphasis placed on their effect on STAT3-regulated lipid metabolism and their role in abrogating therapy resistance.
Collapse
|
12
|
Nakuluri K, Srivani G. Phytochemicals Plus Checkpoint Inhibitors in GI Cancers. PHYTOCHEMICALS TARGETING TUMOR MICROENVIRONMENT IN GASTROINTESTINAL CANCERS 2020:83-107. [DOI: 10.1007/978-3-030-48405-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol Res Pract 2019; 215:152556. [PMID: 31358480 DOI: 10.1016/j.prp.2019.152556] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/01/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Curcumin is a natural non-toxic phenol which is isolated from Curcumin longa L. Mounting evidence has revealed the anticancer properties of curcumin in various tumors, but the underlying molecular mechanisms of this suppression in cervical cancer is still remained unclear. Here we assessed the antitumor effects of curcumin compared with 5-Fluorouracil in Hella cells in spheroids models and monolayer cell cultures. The anti-proliferative effects of curcumin and 5-Fluorouracil were as examined in spheroid and monolayer models. The expression levels of Wnt/β-catenin and NF-kB pathways as well as the influence of the cell cycle were evaluated. Curcumin inhibited cell growth in Hella cells through the regulation of NF-kB and Wnt pathways. Also, cells developed a G2/M cell cycle arrest followed by sub-G1 apoptosis with 5-Fluorouracil and curcumin. It was also shown that curcumin either considerably affects the Wnt/β-catenin and NF-kB pathways. We showed that curcumin inhibits invasion and proliferation of cervical cancer cells via impairment of NF-kB and Wnt/β-catenin pathways, proposing further studies on the potential impacts of this compound on cancer therapy.
Collapse
|
14
|
Komal K, Chaudhary S, Yadav P, Parmanik R, Singh M. The Therapeutic and Preventive Efficacy of Curcumin and Its Derivatives in Esophageal Cancer. Asian Pac J Cancer Prev 2019; 20:1329-1337. [PMID: 31127885 PMCID: PMC6857884 DOI: 10.31557/apjcp.2019.20.5.1329] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/25/2019] [Indexed: 01/06/2023] Open
Abstract
Esophageal cancer is the eighth most common occurring cancer type worldwide and 6th most common among the cancer related deaths of which the most common type is squamous cell carcinoma which comprise about 90% of esophageal cancer cases. The standard of care for esophageal cancer is neoadjuvant concurrent chemotherapy and radiation (NACRT) followed by surgery however the prognosis remains dismal with 5 year survival a meager 10-15%. The treatment modalities for esophageal cancer is associated with both long term and short term toxicities. Curcumin has been explored as a therapeutic modality as a chemo adjuvant in different cancers due to its low toxicity profile and potent anticancer effect however despite lot of promising preclinical data it has not progressed from bench side to bed side. The primary reason that has obstructed its application in clinic has been its low bioavailability which was seen in different clinical trials but there has been tremendous progress in developing formulations of curcumin which have significantly increased its bioavailability and are being tested in clinical trials. Esophageal cancer is associated with inflammation that’s why curcumin being a natural antioxidant offer a potential avenue to reduce toxicity of current therapeutic modalities in a chemo adjuvant setting while simultaneously targeting different pro oncogenic pathways. The present review tries to cover in depth different aspects of curcumin application in treatment of esophageal cancer and progress of this potent anticancer agent in its treatment and prevention.
Collapse
Affiliation(s)
- Komal Komal
- Department of Biochemistry All India Institute of Medical Sciences Delhi, New Delhi India
| | - Shilpi Chaudhary
- Department of Medical Oncology BRAIRCH All India Institute of Medical Sciences Delhi, New Delhi, India.
| | - Preeti Yadav
- Department of Microbiology Gargi College University of Delhi, New Delhi, India
| | - Raja Parmanik
- Department of Medical Oncology BRAIRCH All India Institute of Medical Sciences Delhi, New Delhi, India.
| | - Mayank Singh
- Department of Medical Oncology BRAIRCH All India Institute of Medical Sciences Delhi, New Delhi, India.
| |
Collapse
|
15
|
Samuels TL, Pearson ACS, Wells CW, Stoner GD, Johnston N. Curcumin and Anthocyanin Inhibit Pepsin-Mediated Cell Damage and Carcinogenic Changes in Airway Epithelial Cells. Ann Otol Rhinol Laryngol 2019. [DOI: 10.1177/000348941312201006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tina L. Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amy C. S. Pearson
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Clive W. Wells
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gary D. Stoner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
16
|
Kwiecien S, Magierowski M, Majka J, Ptak-Belowska A, Wojcik D, Sliwowski Z, Magierowska K, Brzozowski T. Curcumin: A Potent Protectant against Esophageal and Gastric Disorders. Int J Mol Sci 2019; 20:1477. [PMID: 30909623 PMCID: PMC6471759 DOI: 10.3390/ijms20061477] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Turmeric obtained from the rhizomes of Curcuma longa has been used in the prevention and treatment of many diseases since the ancient times. Curcumin is the principal polyphenol isolated from turmeric, which exhibits anti-inflammatory, antioxidant, antiapoptotic, antitumor, and antimetastatic activities. The existing evidence indicates that curcumin can exert a wide range of beneficial pleiotropic properties in the gastrointestinal tract, such as protection against reflux esophagitis, Barrett's esophagus, and gastric mucosal damage induced by nonsteroidal anti-inflammatory drugs (NSAIDs) and necrotizing agents. The role of curcumin as an adjuvant in the treatment of a Helicobacter pylori infection in experimental animals and humans has recently been proposed. The evidence that this turmeric derivative inhibits the invasion and proliferation of gastric cancer cells is encouraging and warrants further experimental and clinical studies with newer formulations to support the inclusion of curcumin in cancer therapy regimens. This review was designed to analyze the existing data from in vitro and in vivo animal and human studies in order to highlight the mechanisms of therapeutic efficacy of curcumin in the protection and ulcer healing of the upper gastrointestinal tract, with a major focus on addressing the protection of the esophagus and stomach by this emerging compound.
Collapse
Affiliation(s)
- Slawomir Kwiecien
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| | - Jolanta Majka
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| | - Dagmara Wojcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| | - Zbigniew Sliwowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| | - Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| |
Collapse
|
17
|
Partial protection by 18β Glycrrhetinic acid against Cisplatin induced oxidative intestinal damage in wistar rats: Possible role of NFkB and caspases. Pharmacol Rep 2017; 69:1007-1013. [PMID: 28939345 DOI: 10.1016/j.pharep.2017.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 01/28/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cisplatin (CP) is a potent chemotherapeutic agent commonly used for the treatment of various malignancies. It has varied undesirable effects such as nephrotoxicity, intestinal toxicity which limit its wide and extensive clinical usage. 18β-Glycyrrhetinic acid (GA) is a pentacyclic triterpenoid derivative, obtained from the herb liquorice having pharmacological properties such as anti-inflammatory, hepatoprotective and antioxidant. The present study was designed to investigate in vivo efficacy of GA against CP induced small intestinal toxicity. METHODS Rats were subjected to prophylactic oral treatment of GA (50 and 100mg/kg body weight) for 21days against intestinal toxicity induced by single intra peritoneal injection of CP (10mg/kg body weight) on day 18th and sacrificed on 21st day. RESULTS The plausible mechanism of CP induced small intestinal toxicity is via deficit in anti-oxidant armory, induction of oxidative stress; TNF-α, NFkB, activation of apoptotic pathway proteins by up regulation of caspases. However prophylactic treatment of GA diminished oxidative stress markers, TNF-α, NFkB expression and enhanced anti-oxidant status, down regulated apoptosis, recovered histopatholgical alterations in small intestine. CONCLUSION Therefore, results of the present finding provide strong evidence that GA may be a useful modulator in alleviating CP induced intestinal toxicity.
Collapse
|
18
|
Functional human induced hepatocytes (hiHeps) with bile acid synthesis and transport capacities: A novel in vitro cholestatic model. Sci Rep 2016; 6:38694. [PMID: 27934920 PMCID: PMC5146671 DOI: 10.1038/srep38694] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/11/2016] [Indexed: 12/25/2022] Open
Abstract
Drug-induced cholestasis is a leading cause of drug withdrawal. However, the use of primary human hepatocytes (PHHs), the gold standard for predicting cholestasis in vitro, is limited by their high cost and batch-to-batch variability. Mature hepatocyte characteristics have been observed in human induced hepatocytes (hiHeps) derived from human fibroblast transdifferentiation. Here, we evaluated whether hiHeps could biosynthesize and excrete bile acids (BAs) and their potential as PHH alternatives for cholestasis investigations. Quantitative real-time PCR (qRT-PCR) and western blotting indicated that hiHeps highly expressed BA synthases and functional transporters. Liquid chromatography tandem mass spectrometry (LC-MS/MS) showed that hiHeps produced normal intercellular unconjugated BAs but fewer conjugated BAs than human hepatocytes. When incubated with representative cholestatic agents, hiHeps exhibited sensitive drug-induced bile salt export pump (BSEP) dysfunction, and their response to cholestatic agent-mediated cytotoxicity correlated well with that of PHHs (r2 = 0.8032). Deoxycholic acid (DCA)-induced hepatotoxicity in hiHeps was verified by elevated aspartate aminotransferase (AST) and γ-glutamyl-transferase (γ-GT) levels. Mitochondrial damage and cell death suggested DCA-induced toxicity in hiHeps, which were attenuated by hepatoprotective drugs, as in PHHs. For the first time, hiHeps were reported to biosynthesize and excrete BAs, which could facilitate predicting cholestatic hepatotoxicity and screening potential therapeutic drugs against cholestasis.
Collapse
|
19
|
Therapeutic targeting of myeloid-derived suppressor cells involves a novel mechanism mediated by clusterin. Sci Rep 2016; 6:29521. [PMID: 27405665 PMCID: PMC4942787 DOI: 10.1038/srep29521] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) constitute a key checkpoint that impedes tumor immunity against cancer. Chemotherapeutic intervention of MDSCs has gained ground as a strategy for cancer therapy but its mechanism remains obscure.We report here a unique mechanism by which monocytic (M)-MDSCs are spared, allowing them to polarize towards M1 macrophages for reactivation of immunity against breast cancer. We first demonstrated that curcumin, like docetaxel (DTX), can selectively target CD11b+Ly6G+Ly6Clow granulocytic (G)-MDSCs, sparing CD11b+Ly6G−Ly6Chigh M-MDSCs, with reduced tumor burden in 4T1-Neu tumor-bearing mice. Curcumin treatment polarized surviving M-MDSCs toward CCR7+ Dectin-1−M1 cells, accompanied by IFN-γ production and cytolytic function in T cells. Selective M-MDSC chemoresistence to curcumin and DTX was mediated by secretory/cytoplasmic clusterin (sCLU). sCLU functions by trapping Bax from mitochondrial translocation, preventing the apoptotic cascade. Importantly, sCLU was only found in M-MDSCs but not in G-MDSCs. Knockdown of sCLU in M-MDSCs and RAW264.7 macrophages was found to reverse their natural chemoresistance. Clinically, breast cancer patients possess sCLU expression only in mature CD68+ macrophages but not in immature CD33+ immunosuppressive myeloid cells infiltrating the tumors. We thus made the seminal discovery that sCLU expression in M-MDSCs accounts for positive immunomodulation by chemotherapeutic agents.
Collapse
|
20
|
LAN FENGMING, YANG YANG, HAN JING, WU QIAOLI, YU HUIMING, YUE XIAO. Sulforaphane reverses chemo-resistance to temozolomide in glioblastoma cells by NF-κB-dependent pathway downregulating MGMT expression. Int J Oncol 2015; 48:559-68. [DOI: 10.3892/ijo.2015.3271] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/05/2015] [Indexed: 11/06/2022] Open
|
21
|
The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015; 20:2728-69. [PMID: 25665066 PMCID: PMC6272781 DOI: 10.3390/molecules20022728] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
Despite significant advances in treatment modalities over the last decade, neither the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and are also expensive. Thus identification of pharmacological agents that do not have these disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa), is one such agent that has been extensively studied over the last three to four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has been found to suppress initiation, progression, and metastasis of a variety of tumors. These anti-cancer effects are predominantly mediated through its negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at different phases of the cell cycle and/or by inducing their apoptosis. The current review focuses on the diverse molecular targets modulated by curcumin that contribute to its efficacy against various human cancers.
Collapse
|
22
|
Lan F, Yue X, Ren G, Li H, Ping L, Wang Y, Xia T. miR-15a/16 enhances radiation sensitivity of non-small cell lung cancer cells by targeting the TLR1/NF-κB signaling pathway. Int J Radiat Oncol Biol Phys 2014; 91:73-81. [PMID: 25442346 DOI: 10.1016/j.ijrobp.2014.09.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/05/2014] [Accepted: 09/13/2014] [Indexed: 12/31/2022]
Abstract
PURPOSE Many miRNAs have been identified as essential issues and core determining factors in tumor radiation. Recent reports have demonstrated that miRNAs and Toll-like receptors could exert reciprocal effects to control cancer development in various ways. However, a novel role of miR-15a/16 in enhancing radiation sensitivity by directly targeting TLR1 has not been reported, to our knowledge. METHODS AND MATERIALS Bioinformatic analyses, luciferase reporter assay, biochemical assays, and subcutaneous tumor establishment were used to characterize the signaling pathways of miRNA-15a/16 in response to radiation treatment. RESULTS First, an inverse correlation between the expression of miR-15a/16 and TLR1 protein was revealed in non-small cell lung cancer (NSCLC) and normal lung tissues. Next, we corroborated that miR-15a/16 specifically bound to TLR1 3'UTR and inhibited the expression of TLR1 in H358 and A549 cells. Furthermore, miR-15a/16 downregulated the activity of the NF-κB signaling pathway through TLR1. In addition, overexpression of miR-15a/16 inhibited survival capability and increased radiation-induced apoptosis, resulting in enhancement of radiosensitivity in H358 and A549 cells. Finally, subcutaneous tumor bearing NSCLC cells in a nude mice model was established, and the results showed that combined groups (miR-15a/16 + radiation) inhibited tumor growth more significantly than did radiation alone. CONCLUSIONS We mainly elucidate that miRNA-15a/16 can enhance radiation sensitivity by regulating the TLR1/NF-κB signaling pathway and act as a potential therapeutic approach to overcome radioresistance for lung cancer treatment.
Collapse
Affiliation(s)
- Fengming Lan
- Radiation Oncology Department, PLA Airforce General Hospital, Beijing, China; Radiation Oncology Department, Tianjin Hospital, Tianjin, China
| | - Xiao Yue
- Tianjin Huanhu Hospital, Tianjin Neurosurgery Institute, Tianjin, China
| | - Gang Ren
- Radiation Oncology Department, PLA Airforce General Hospital, Beijing, China
| | - Hongqi Li
- Radiation Oncology Department, PLA Airforce General Hospital, Beijing, China
| | - Li Ping
- Radiation Oncology Department, PLA Airforce General Hospital, Beijing, China
| | - Yingjie Wang
- Radiation Oncology Department, PLA Airforce General Hospital, Beijing, China
| | - Tingyi Xia
- Radiation Oncology Department, PLA Airforce General Hospital, Beijing, China.
| |
Collapse
|
23
|
Plotnikoff GA. Three measurable and modifiable enteric microbial biotransformations relevant to cancer prevention and treatment. Glob Adv Health Med 2014; 3:33-43. [PMID: 24891992 PMCID: PMC4030612 DOI: 10.7453/gahmj.2014.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Interdisciplinary scientific evaluation of the human microbiota has identified three enteric microbial biotransformations of particular relevance for human health and well-being, especially cancer. Two biotransformations are counterproductive; one is productive. First, selective bacteria can reverse beneficial hepatic hydroxylation to produce toxic secondary bile acids, especially deoxycholic acid. Second, numerous bacterial species can reverse hepatic detoxification-in a sense, retoxify hormones and xeonobiotics-by deglucuronidation. Third, numerous enteric bacteria can effect a very positive biotransformation through the production of butyrate, a small chain fatty acid with anti-cancer activity. Each biotransformation is addressed in sequence for its relevance in representative gastrointestinal and extra-intestinal cancers. This is not a complete review of their connection with every type of cancer. The intent is to introduce the reader to clinically relevant microbial biochemistry plus the emerging evidence that links these to both carcinogenesis and treatment. Included is the evidence base to guide counseling for potentially helpful dietary adjustments.
Collapse
Affiliation(s)
- Gregory A Plotnikoff
- Penny George Institute for Health and Healing, Abbott Northwestern Hospital, Minneapolis, Minnesota, United States
| |
Collapse
|
24
|
Fitzgerald RC, di Pietro M, Ragunath K, Ang Y, Kang JY, Watson P, Trudgill N, Patel P, Kaye PV, Sanders S, O'Donovan M, Bird-Lieberman E, Bhandari P, Jankowski JA, Attwood S, Parsons SL, Loft D, Lagergren J, Moayyedi P, Lyratzopoulos G, de Caestecker J. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett's oesophagus. Gut 2014; 63:7-42. [PMID: 24165758 DOI: 10.1136/gutjnl-2013-305372] [Citation(s) in RCA: 866] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
These guidelines provide a practical and evidence-based resource for the management of patients with Barrett's oesophagus and related early neoplasia. The Appraisal of Guidelines for Research and Evaluation (AGREE II) instrument was followed to provide a methodological strategy for the guideline development. A systematic review of the literature was performed for English language articles published up until December 2012 in order to address controversial issues in Barrett's oesophagus including definition, screening and diagnosis, surveillance, pathological grading for dysplasia, management of dysplasia, and early cancer including training requirements. The rigour and quality of the studies was evaluated using the SIGN checklist system. Recommendations on each topic were scored by each author using a five-tier system (A+, strong agreement, to D+, strongly disagree). Statements that failed to reach substantial agreement among authors, defined as >80% agreement (A or A+), were revisited and modified until substantial agreement (>80%) was reached. In formulating these guidelines, we took into consideration benefits and risks for the population and national health system, as well as patient perspectives. For the first time, we have suggested stratification of patients according to their estimated cancer risk based on clinical and histopathological criteria. In order to improve communication between clinicians, we recommend the use of minimum datasets for reporting endoscopic and pathological findings. We advocate endoscopic therapy for high-grade dysplasia and early cancer, which should be performed in high-volume centres. We hope that these guidelines will standardise and improve management for patients with Barrett's oesophagus and related neoplasia.
Collapse
|
25
|
The esophagitis to adenocarcinoma sequence; the role of inflammation. Cancer Lett 2013; 345:182-9. [PMID: 23994342 DOI: 10.1016/j.canlet.2013.08.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 12/19/2022]
Abstract
Esophageal adenocarcinoma (EAC) is the eighth most common cancer worldwide, and approximately 15% of patients survive 5years. Reflux disease (GERD) and Barrett's esophagus (BE) are major risk factors for the development of EAC, and epidemiologic studies highlight a strong association with obesity. The immune, inflammatory and intracellular signaling changes resulting from chronic inflammation of the esophageal squamous epithelium are increasingly well characterized. In GERD and Barrett's, an essential role for T-cells in the initiation of inflammation in the esophagus has been identified, and a balance between T-cell responses and phenotype may play an important role in disease progression. Obesity is a chronic low-grade inflammatory state, fueled by adipose tissue derived- inflammatory mediators such as IL-6, TNF-α and leptin, representing a novel area for targeted research. Additionally, reactive oxygen species (ROS) and receptor tyrosine kinase (RTK) activation may drive progression from esophagitis to EAC, and downstream signaling pathways employed by these molecules may be important. This review will explain the diverse range of mechanisms potentially driving and maintaining inflammation within the esophagus and explore both existing and future therapeutic strategies targeting the process.
Collapse
|
26
|
Chung MY, Lim TG, Lee KW. Molecular mechanisms of chemopreventive phytochemicals against gastroenterological cancer development. World J Gastroenterol 2013; 19:984-993. [PMID: 23467658 PMCID: PMC3582010 DOI: 10.3748/wjg.v19.i7.984] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/12/2012] [Accepted: 01/24/2013] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Commonly used cancer treatments, including chemotherapy and radiation therapy, often have side effects and a complete cure is sometimes impossible. Therefore, prevention, suppression, and/or delaying the onset of the disease are important. The onset of gastroenterological cancers is closely associated with an individual’s lifestyle. Thus, changing lifestyle, specifically the consumption of fruits and vegetables, can help to protect against the development of gastroenterological cancers. In particular, naturally occurring bioactive compounds, including curcumin, resveratrol, isothiocyanates, (-)-epigallocatechin gallate and sulforaphane, are regarded as promising chemopreventive agents. Hence, regular consumption of these natural bioactive compounds found in foods can contribute to prevention, suppression, and/or delay of gastroenterological cancer development. In this review, we will summarize natural phytochemicals possessing potential antioxidant and/or anti-inflammatory and anti-carcinogenic activities, which are exerted by regulating or targeting specific molecules against gastroenterological cancers, including esophageal, gastric and colon cancers.
Collapse
|
27
|
Shehzad A, Lee J, Lee YS. Curcumin in various cancers. Biofactors 2013; 39:56-68. [PMID: 23303705 DOI: 10.1002/biof.1068] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 12/18/2022]
Abstract
Curcumin (diferuloylmethane), an active constituent of turmeric, is a well-described phytochemical, which has been used since ancient times for the treatment of various diseases. The dysregulation of cell signaling pathways by the gradual alteration of regulatory proteins is the root cause of cancers. Curcumin modulates regulatory proteins through various molecular mechanisms. Several research studies have provided in-depth analysis of multiple targets through which curcumin induces protective effects against cancers including gastrointestinal, genitourinary, gynecological, hematological, pulmonary, thymic, brain, breast, and bone. The molecular mechanisms of action of curcumin in treating different types of cancers remain under investigation. The multifaceted role of this dietary agent is mediated through its inhibition of several cell signaling pathways at multiple levels. Curcumin has the ability to inhibit carcinogenicity through the modulation of the cell cycle by binding directly and indirectly to molecular targets including transcription factors (NF-kB, STAT3, β-catenin, and AP-1), growth factors (EGF, PDGF, and VEGF), enzymes (COX-2, iNOS, and MMPs), kinases (cyclin D1, CDKs, Akt, PKC, and AMPK), inflammatory cytokines (TNF, MCP, IL-1, and IL-6), upregulation of proapoptotic (Bax, Bad, and Bak) and downregulation of antiapoptotic proteins (Bcl(2) and Bcl-xL). A variety of animal models and human studies have proven that curcumin is safe and well tolerated even at very high doses. This study elaborates the current understanding of the chemopreventive effects of curcumin through its multiple molecular pathways and highlights its therapeutic value in the treatment and prevention of a wide range of cancers.
Collapse
Affiliation(s)
- Adeeb Shehzad
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | | | | |
Collapse
|