1
|
Zhong W, Mao J, Wu D, Peng J, Ye W. The efficacy of stereotactic radiotherapy followed by bevacizumab and temozolomide in the treatment of recurrent glioblastoma: a case report. Front Pharmacol 2024; 15:1401000. [PMID: 39295944 PMCID: PMC11408163 DOI: 10.3389/fphar.2024.1401000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor among adults. Despite advancements in multimodality therapy for GBM, the overall prognosis remains poor, with an extremely high risk of recurrence. Currently, there is no established consensus on the optimal treatment option for recurrent GBM, which may include reoperation, reirradiation, chemotherapy, or a combination of the above. Bevacizumab is considered a first-line treatment option for recurrent GBM, as is temozolomide. However, in recurrent GBM, it is necessary to balance the risks and benefits of reirradiation in combination with bevacizumab and temozolomide. Herein, we report the case of a patient with recurrent GBM after standard treatment who benefited from stereotactic radiotherapy followed by bevacizumab and temozolomide maintenance therapy. Following 16 months of concurrent chemoradiotherapy (CCRT), the patient was diagnosed with recurrent GBM by a 3-T contrast-enhanced magnetic resonance imaging (MRI). The addition of localized radiotherapy to the ongoing treatment regimen of bevacizumab, in combination with temozolomide therapy, prolonged the patient's disease-free survival to over 2 years, achieving a significant long-term outcome, with no notable adverse effects observed. This clinical case may provide a promising new option for patients with recurrent GBM.
Collapse
Affiliation(s)
- Wangyan Zhong
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jiwei Mao
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Dongping Wu
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jianghua Peng
- Department of General Practice, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Wanli Ye
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
2
|
Lu Y, Liao L, Du K, Mo J, Zou X, Liang J, Chen J, Tang W, Su L, Wu J, Zhang J, Tan Y. Clinical activity and safety of sintilimab, bevacizumab, and TMZ in patients with recurrent glioblastoma. BMC Cancer 2024; 24:133. [PMID: 38273249 PMCID: PMC10811825 DOI: 10.1186/s12885-024-11848-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
PURPOSE There are limited and no standard therapies for recurrent glioblastoma. We herein report the antitumour activity and safety of sintilimab, bevacizumab and temozolomide (TMZ) in recurrent glioblastoma. METHODS We retrospectively analysed eight patients with recurrent glioblastoma treated with sintilimab (200 mg) every three weeks + bevacizumab (10 mg/kg) every three weeks + TMZ (200 mg/m²orally) (5 days orally every 28 days for a total of four weeks). The primary objective was investigator-assessed median progression-free survival(mPFS). Secondary objectives were to assess the 6-month PFS, objective response rate (ORR) and duration of response (DOR) accroding to RANO criteria. RESULTS The mPFS time for 8 patients was 3.340 months (95% CI: 2.217-4.463), The longest PFS was close to 9 months. Five patients were assessed to have achieved partial response (PR), with an overall remission rate of 62.5%, Four patients experienced a change in tumour volume at the best response time of greater than 60% shrinkage from baseline, and one patient remained progression free upon review, with a DOR of more than 6.57 months. The 6-month PFS was 25% (95% CI: 5.0-55.0%). Three patients had a treatment-related adverse events, though no grade 4 or 5 adverse events occurred. CONCLUSION In this small retrospective study, the combination regimen of sintilimab, bevacizumab and TMZ showed promising antitumour activity in treatment of recurrent glioblastoma, with a good objective remission rate.
Collapse
Affiliation(s)
- Yinghao Lu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China
| | - Limin Liao
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China
| | - Kunpeng Du
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China
| | - Jianhua Mo
- Department of Image, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xia Zou
- Department of Image, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Junxian Liang
- Department of Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jiahui Chen
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China
| | - Wenwen Tang
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China
| | - Liwei Su
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China
| | - Jieping Wu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China
| | - Junde Zhang
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China.
| | - Yujing Tan
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China.
| |
Collapse
|
3
|
Winograd E, Germano I, Wen P, Olson JJ, Ormond DR. Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of targeted therapies and immunotherapies in the management of progressive glioblastoma. J Neurooncol 2022; 158:265-321. [PMID: 34694567 PMCID: PMC8543777 DOI: 10.1007/s11060-021-03876-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
The following questions and recommendations are pertinent to the following: TARGET POPULATION: These recommendations apply to adults with progressive GBM who have undergone standard primary treatment with surgery and/or chemoradiation. QUESTION 1: In adults with progressive glioblastoma is the use of bevacizumab as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: Treatment with bevacizumab is suggested in the treatment of progressive GBM, as it provides improved disease control compared to historical controls as measured by best imaging response and progression free survival at 6 months, while not providing evidence for improvement in overall survival. QUESTION 2: In adults with progressive glioblastoma is the use of bevacizumab as combination therapy with cytotoxic agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: There is insufficient evidence to show benefit or harm of bevacizumab in combination with cytotoxic therapies in progressive glioblastoma due to a lack of evidence supporting a clearly defined benefit without significant toxicity. QUESTION 3: In adults with progressive glioblastoma is the use of bevacizumab as a combination therapy with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 4: In adults with progressive glioblastoma is the use of targeted agents as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 5: In adults with progressive glioblastoma is the use of targeted agents in combination with cytotoxic therapies superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 6: In adults with progressive glioblastoma is the use of immunotherapy monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 7: In adults with progressive glioblastoma is the use of immunotherapy in combination with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 8: In adults with progressive glioblastoma is the use of immunotherapy in combination with bevacizumab superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question.
Collapse
Affiliation(s)
- Evan Winograd
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Isabelle Germano
- Department of Neurosurgery, The Mount Sinai Hospital, New York, NY, USA
| | - Patrick Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12631 E. 17th Ave., Mail Stop C307, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Chiocca EA, Nassiri F, Wang J, Peruzzi P, Zadeh G. Viral and other therapies for recurrent glioblastoma: is a 24-month durable response unusual? Neuro Oncol 2019; 21:14-25. [PMID: 30346600 PMCID: PMC6303472 DOI: 10.1093/neuonc/noy170] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A phase I trial of an engineered poliovirus for the treatment of recurrent glioblastoma (GBM) has attracted attention due to 8 survivors reaching the 24-month and 5 reaching the 36-month survival landmarks.1 Genetically engineered viruses (oncolytic viruses) have been in trials for GBM for almost two decades.2 These replication-competent (tumor-selective, oncolytic, replication-conditional) viruses or replication-defective viral vectors (gene therapy) deliver cytotoxic payloads to tumors, leading to immunogenic death and intratumoral inflammatory responses. This transforms the tumor microenvironment from immunologically naïve ("cold") to inflamed ("hot"), increasing immune cell recognition of tumor antigens and the durable responses observed in virotherapy.3,4 Several current and past virotherapy trials have reported a "tail" of apparent responders at the 24-month landmark. Other modalities have also reported a "tail" of seemingly long-term survivors. These trials seem to show that these responder "tails" characterize a defined subset of GBM patients.
Collapse
Affiliation(s)
- E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Farshad Nassiri
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Justin Wang
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Liao KL, Huang S, Wu YP. The prognosis for patients with newly diagnosed glioblastoma receiving bevacizumab combination therapy: a meta-analysis. Onco Targets Ther 2018; 11:3513-3520. [PMID: 29950856 PMCID: PMC6016281 DOI: 10.2147/ott.s156723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background A combination of temozolomide (TMZ) and radiotherapy and subsequent adjuvant chemotherapy is the gold standard of treatment for glioblastoma (GB). Bevacizumab (BEV), a humanized monoclonal antibody that blocks the effects of vascular endothelial growth factor A, has produced impressive response rates for recurrent GB and has been approved as second-line therapy. The efficacy and safety of BEV in newly diagnosed GB are not known. Aim This systematic meta-analysis was undertaken to evaluate the value of combination therapy involving BEV in newly diagnosed GB. Methods Electronic databases were searched for eligible literature up to October 2017. Randomized controlled trials assessing the efficacy and safety of BEV in patients with newly diagnosed GB were included, of which the main outcomes were progression-free survival (PFS), overall survival (OS), and adverse events (AEs). All the data were pooled with the corresponding 95% confidence intervals (CIs) using RevMan software. Sensitivity analyses and heterogeneity were quantitatively evaluated. Results A total of six randomized controlled trials were included in this analysis. The experimental BEV group had significantly improved the overall PFS (OR =0.46, 95% CI =0.26–0.81, P=0.007), as well as PFS at 6 months (OR =3.47, 95% CI =2.85–4.22, P<0.00001) and PFS at 12 months (OR =2.02, 95% CI =1.66–2.46, P<0.00001), respectively. However, there were no significant differences in PFS at 24 months with BEV (OR =0.95, 95% CI =0.61–1.48, P=0.82). OS at 6 months (P=0.07) and 24 months (P=0.07) was not significantly improved with BEV in patients with newly diagnosed GB. However, the meta-analysis on the OS at 12 months showed differences with BEV (OR =1.24, 95% CI =1.03–1.50, P=0.02). Conclusion Our study indicates that addition of BEV for newly diagnosed GB resulted in a superior PFS rate. However, the combination therapy involving BEV did not improve OS. Future investigations are needed to analyze whether BEV helps improve OS efficacy.
Collapse
Affiliation(s)
- Ke-Li Liao
- Department of Neurosurgery, Zigong First People's Hospital, Zigong, Sichuan, People's Republic of China
| | - Song Huang
- Department of Neurosurgery, Zigong First People's Hospital, Zigong, Sichuan, People's Republic of China
| | - Yu-Peng Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
6
|
Omuro A, Vlahovic G, Lim M, Sahebjam S, Baehring J, Cloughesy T, Voloschin A, Ramkissoon SH, Ligon KL, Latek R, Zwirtes R, Strauss L, Paliwal P, Harbison CT, Reardon DA, Sampson JH. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143. Neuro Oncol 2018; 20:674-686. [PMID: 29106665 PMCID: PMC5892140 DOI: 10.1093/neuonc/nox208] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Immunotherapies have demonstrated efficacy across a diverse set of tumors supporting further evaluation in glioblastoma. The objective of this study was to evaluate the safety/tolerability and describe immune-mediated effects of nivolumab ± ipilimumab in patients with recurrent glioblastoma. Exploratory efficacy outcomes are also reported. Methods Patients were randomized to receive nivolumab 3 mg/kg every 2 weeks (Q2W; NIVO3) or nivolumab 1 mg/kg + ipilimumab 3 mg/kg every 3 weeks (Q3W) for 4 doses, then nivolumab 3 mg/kg Q2W (NIVO1+IPI3). An alternative regimen of nivolumab 3 mg/kg + ipilimumab 1 mg/kg Q3W for 4 doses, then nivolumab 3 mg/kg Q2W (NIVO3+IPI1) was investigated in a nonrandomized arm. Results Forty patients were enrolled (NIVO3, n = 10; NIVO1+IPI3, n = 10; NIVO3+IPI1, n = 20). The most common treatment-related adverse events (AEs) were fatigue (NIVO3, 30%; NIVO1+IPI3, 80%; NIVO3+IPI1, 55%) and diarrhea (10%, 70%, 30%, respectively). AEs leading to discontinuation occurred in 10% (NIVO3), 30% (NIVO1+IPI3), and 20% (NIVO3+IPI1) of patients. Three patients achieved a partial response (NIVO3, n = 1; NIVO3+IPI1, n = 2) and 8 had stable disease for ≥12 weeks (NIVO3, n = 2; NIVO1+IPI3, n = 2; NIVO3+IPI1, n = 4 [Response Assessment in Neuro-Oncology criteria]). Most patients (68%) had tumor-cell programmed death ligand-1 expression ≥1%. Immune-mediated effects mimicking radiographic progression occurred in 2 patients. Conclusions Nivolumab monotherapy was better tolerated than nivolumab + ipilimumab; the tolerability of the combination was influenced by ipilimumab dose. These safety and exploratory findings merit further investigation of immunotherapies in glioblastoma.
Collapse
Affiliation(s)
- Antonio Omuro
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Michael Lim
- The Johns Hopkins Hospital, Baltimore, Maryland
| | - Solmaz Sahebjam
- Moffitt Cancer Center, University of South Florida, Tampa, Florida
| | | | | | | | - Shakti H Ramkissoon
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Keith L Ligon
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | - David A Reardon
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
7
|
Gariani J, Hottinger AF, Ben Aissa A, Korchi MA, Boto J, Gariani K, Lovblad KO, Vargas MI. New patterns of magnetic resonance images in high-grade glioma patients treated with bevacizumab (Avastin®). CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x17752903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- J Gariani
- Department of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - AF Hottinger
- Division of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - A Ben Aissa
- Division of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - MA Korchi
- Department of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Jose Boto
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - K Gariani
- Division of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - KO Lovblad
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - MI Vargas
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
8
|
Tipping M, Eickhoff J, Ian Robins H. Clinical outcomes in recurrent glioblastoma with bevacizumab therapy: An analysis of the literature. J Clin Neurosci 2017; 44:101-106. [PMID: 28711289 DOI: 10.1016/j.jocn.2017.06.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022]
Abstract
Bevacizumab (BEV) is a common treatment for recurrent glioblastoma (GBM). After progression on BEV, there is no consensus on subsequent therapy, as multiple chemotherapy trials have failed to demonstrate discernible activity for salvage. A previous review (995 patients) estimated a progression free survival (PFS) on BEV of 4.2months (SD±2.1) with an overall survival (OS) after progression on BEV at 3.8months (SD±1). We endeavored to establish a more rigorous historical control, both as a benchmark for efficacy, and a prognostic tool for clinical practice. A comprehensive literature review was performed utilizing PubMed and societal presentation abstracts. A total 2388 patients from 53 arms of 42 studies were analyzed in three groups: 1) thirty-two studies in which survival post-BEV was determined by subtracting PFS from OS (2045 patients): PFS on BEV=4.38months (95% CI 4.09-4.68); OS post-BEV=3.36months (95% CI 3.12-3.66); 2) two studies (94 patients) in which OS post-BEV is reported: OS=3.26 (95% CI 2.39-4.42); 3) eight studies of salvage therapy after progression on BEV (249 patients): of OS post-BEV=4.46months (95% CI 3.68-5.54). These estimates provide a firm historical control for PFS on BEV, as well as OS after disease progression on BEV therapy.
Collapse
Affiliation(s)
- Matthew Tipping
- Department of Medicine University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, United States
| | - Jens Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, United States; University of Wisconsin Carbone Cancer Center, UWSMPH, United States
| | - H Ian Robins
- University of Wisconsin Carbone Cancer Center, UWSMPH, United States; Departments of Medicine, Human Oncology and Neurology, K4/534 Clinical Science Center, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, United States.
| |
Collapse
|
9
|
Su J, Cai M, Li W, Hou B, He H, Ling C, Huang T, Liu H, Guo Y. Molecularly Targeted Drugs Plus Radiotherapy and Temozolomide Treatment for Newly Diagnosed Glioblastoma: A Meta-Analysis and Systematic Review. Oncol Res 2017; 24:117-28. [PMID: 27296952 PMCID: PMC7838606 DOI: 10.3727/096504016x14612603423511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor that nearly always results in a bad prognosis. Temozolomide plus radiotherapy (TEM+RAD) is the most common treatment for newly diagnosed GBM. With the development of molecularly targeted drugs, several clinical trials were reported; however, the efficacy of the treatment remains controversial. So we attempted to measure the dose of the molecularly targeted drug that could improve the prognosis of those patients. The appropriate electronic databases (PubMed, MEDLINE, EMBASE, and the Cochrane Library) were searched for relevant studies. A meta-analysis was performed after determining which studies met the inclusion criteria. Six randomized, controlled trials (RCTs) were identified for this meta-analysis, comprising 2,637 GBM patients. The benefit of overall survival (OS) was hazard ratio (HZ), 0.936 [95% confidence interval (CI), 0.852–1.028]. The benefit with respect to progression-free survival (PFS) rate was HZ of 0.796 (95% CI, 0.701–0.903). OS benefit of cilengitide was HZ of 0.792 (95% CI, 0.642–0.977). The adverse effects higher than grade 3 were 57.7% in the experimental group and 44.1% in the placebo group (odds ratio, 1.679; 95% CI, 1.434–1.967). The addition of molecularly targeted drugs to TEM + RAD did not improve the OS of patients with GBM; however, it did improve PFS in patients treated by cilengitide who could not get improvement in OS. The rate of adverse effects was higher in the experimental group than in the placebo group.
Collapse
Affiliation(s)
- Jiahao Su
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Therapeutic options in recurrent glioblastoma--An update. Crit Rev Oncol Hematol 2016; 99:389-408. [PMID: 26830009 DOI: 10.1016/j.critrevonc.2016.01.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/01/2016] [Accepted: 01/19/2016] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Standards of care are not yet defined in recurrent glioblastoma. METHODS We reviewed the literature on clinical trials for recurrent glioblastoma available in PubMed and American Society of Clinical Oncology (ASCO) abstracts until June 2015. RESULTS Evidence is limited due to the paucity of randomized controlled studies. Second surgery or re-irradiation are options for selected patients. Alkylating chemotherapy such as nitrosoureas or temozolomide and the vascular endothelial growth factor (VEGF) antibody, bevacizumab, exhibit comparable single agent activity. Phase III data exploring the benefit of combining bevacizumab and lomustine are emerging. Novel approaches in the fields of targeted therapy, immunotherapy, and tumor metabolism are coming forward. Several biomarkers are being explored, but, except for O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation, none has assumed a role in clinical practice. CONCLUSION Proper patient selection, development of predictive biomarkers and randomized controlled studies are required to develop evidence-based concepts for recurrent glioblastoma.
Collapse
|
11
|
AshwaMAX and Withaferin A inhibits gliomas in cellular and murine orthotopic models. J Neurooncol 2015; 126:253-64. [PMID: 26650066 DOI: 10.1007/s11060-015-1972-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/25/2015] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive, malignant cancer Johnson and O'Neill (J Neurooncol 107: 359-364, 2012). An extract from the winter cherry plant (Withania somnifera ), AshwaMAX, is concentrated (4.3 %) for Withaferin A; a steroidal lactone that inhibits cancer cells Vanden Berghe et al. (Cancer Epidemiol Biomark Prev 23: 1985-1996, 2014). We hypothesized that AshwaMAX could treat GBM and that bioluminescence imaging (BLI) could track oral therapy in orthotopic murine models of glioblastoma. Human parietal-cortical glioblastoma cells (GBM2, GBM39) were isolated from primary tumors while U87-MG was obtained commercially. GBM2 was transduced with lentiviral vectors that express Green Fluorescent Protein (GFP)/firefly luciferase fusion proteins. Mutational, expression and proliferative status of GBMs were studied. Intracranial xenografts of glioblastomas were grown in the right frontal regions of female, nude mice (n = 3-5 per experiment). Tumor growth was followed through BLI. Neurosphere cultures (U87-MG, GBM2 and GBM39) were inhibited by AshwaMAX at IC50 of 1.4, 0.19 and 0.22 µM equivalent respectively and by Withaferin A with IC50 of 0.31, 0.28 and 0.25 µM respectively. Oral gavage, every other day, of AshwaMAX (40 mg/kg per day) significantly reduced bioluminescence signal (n = 3 mice, p < 0.02, four parameter non-linear regression analysis) in preclinical models. After 30 days of treatment, bioluminescent signal increased suggesting onset of resistance. BLI signal for control, vehicle-treated mice increased and then plateaued. Bioluminescent imaging revealed diffuse growth of GBM2 xenografts. With AshwaMAX, GBM neurospheres collapsed at nanomolar concentrations. Oral treatment studies on murine models confirmed that AshwaMAX is effective against orthotopic GBM. AshwaMAX is thus a promising candidate for future clinical translation in patients with GBM.
Collapse
|