1
|
Zou Z, Zhong L. Anaplastic thyroid cancer: Genetic roles, targeted therapy, and immunotherapy. Genes Dis 2025; 12:101403. [PMID: 40271195 PMCID: PMC12018003 DOI: 10.1016/j.gendis.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 04/25/2025] Open
Abstract
Anaplastic thyroid cancer (ATC) stands as the most formidable form of thyroid malignancy, presenting a persistent challenge in clinical management. Recent years have witnessed a gradual unveiling of the intricate genetic underpinnings governing ATC through next-generation sequencing. The emergence of this genetic landscape has paved the way for the exploration of targeted therapies and immunotherapies in clinical trials. Despite these strides, the precise mechanisms governing ATC pathogenesis and the identification of efficacious treatments demand further investigation. Our comprehensive review stems from an extensive literature search focusing on the genetic implications, notably the pivotal MAPK and PI3K-AKT-mTOR signaling pathways, along with targeted therapies and immunotherapies in ATC. Moreover, we screen and summarize the advances and challenges in the current diagnostic approaches for ATC, including the invasive tissue sampling represented by fine needle aspiration and core needle biopsy, immunohistochemistry, and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. We also investigate enormous studies on the prognosis of ATC and outline independent prognostic factors for future clinical assessment and therapy for ATC. By synthesizing this literature, we aim to encapsulate the evolving landscape of ATC oncology, potentially shedding light on novel pathogenic mechanisms and avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zhao Zou
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Linhong Zhong
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Zhang L, Zhu C, Huang S, Xu M, Li C, Fu H, Yin Y, Liang S, Wang H, Cui Z, Huang L. Efficient delivery of anlotinib and radioiodine by long circulating nano-capsules for active enhanced suppression of anaplastic thyroid carcinoma. J Nanobiotechnology 2025; 23:180. [PMID: 40050959 PMCID: PMC11884169 DOI: 10.1186/s12951-025-03223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 02/10/2025] [Indexed: 03/10/2025] Open
Abstract
131I therapy is clinically unfeasible for anaplastic thyroid carcinoma (ATC), due to lack of active targets and ATC's resistance to radiation. Novel radionuclide-labeled targeted nano-drug delivery systems have exhibited the potential of prominent tumor imaging and remedy. Capitalizing on recent research achievements in nanotechnology and nuclear medicine, we sought to develop a radiolabeled nano-drug, which could specifically accumulate in ATCs via tumor-selective targeted delivery system and which could treat the tumors with both targeted and radionuclide therapeutics. Epidermal growth factor receptor (EGFR) and mutant P53 expressions were positive in 80% and 60% of patients with ATC, respectively. Herein, core-shell nanoparticles-based poly (ethyleneglycol)-crosslinker (PEG-CL) was fabricated, by encapsulating bovine serum albumin (BSA) inside the core and an enzyme with various tyrosine residues for 131I radiolabeling, and by loading anlotinib, a multi-kinase inhibitor which can site-selectively target overexpressed EGFR in ATC cells and which also suppresses angiogenesis, onto the PEG-CL shell surface. The Anlotinib-BSA nano-capsule (nBSA) showed a mostly uniform size distribution centering at 21-23 nm, and the nano-drug had a characteristic absorption peak at the wavelength of 325 nm. The Anlotinib-nBSA had a high labeling efficiency with the radiochemical purity being approximately 100%. The cellular uptake efficiency of Anlotinib-nBSA-131I was much higher than that of free 131I in both 8305C (3.6% vs 0.0%) and C643 (7.0% vs 0.1%; with a higher EGFR expression level) ATC cell lines. Anlotinib-nBSA-131I showed the strongest cytotoxicity against ATC cells with different concentrations of anlotinib, and induced the highest rate of apoptosis (C643 cells, 81.7%). The nanoparticles could actively target tumor surface with anlotinib exhibiting enhanced radio-sensitization effects by functionally upregulating P53 and Bax. In vivo SPECT/CT imaging showed that the concentration of Anlotinib-nBSA-125I in tumors peaked at 24 h, and the intense signal persisted for at least one week. Anlotinib-nBSA-131I showed the strongest tumor inhibition effects in tumor-bearing mice, with no evident pathological changes observed. Together, the optimal nanoparticles co-loading anlotinib and 131I satisfactorily demonstrated efficient drug delivery and prominent antitumor effects both in vitro and in vivo, without obvious in vivo bio-toxicity. Our innovation could offer novel effective strategies for targeted management of ATC, a highly-aggressive disease with dismal prognosis.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Chuanying Zhu
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Shuo Huang
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Miaomiao Xu
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Chao Li
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Hongliang Fu
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Sheng Liang
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| | - Hui Wang
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| | - Zhilei Cui
- Department of Respiratory Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Lei Huang
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- National Key Laboratory of Immunity and Inflammation, Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
3
|
Shang S, Yang H, Qu L, Fan D, Deng J. Ginsenoside, a potential natural product against liver diseases: a comprehensive review from molecular mechanisms to application. Crit Rev Food Sci Nutr 2025:1-25. [PMID: 39810734 DOI: 10.1080/10408398.2025.2451761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Liver disease constitutes a significant cause of global mortality, with its pathogenesis being multifaceted. Identifying effective pharmacological and preventive strategies is imperative for liver protection. Ginsenosides, the major bioactive compounds found in ginseng, exhibit multiple pharmacological activities including protection against liver-related diseases by mitigating liver fat accumulation and inflammation, preventing hepatic fibrosis, and exerting anti-hepatocarcinogenic effects. However, a comprehensive overview elucidating the regulatory pathways associated with ginsenosides in liver disease remains elusive. This review aims to consolidate the molecular mechanisms through which different ginsenosides ameliorate distinct liver diseases, alongside the pathogenic factors underlying liver ailments. Notably, ginsenosides Rb1 and Rg1 demonstrate significantly effective in treating fatty liver, hepatitis, and liver fibrosis, and ginsenosides CK and Rh2 exhibit potent anti-hepatocellular carcinogenic effects. Their molecular mechanisms underlying these effects primarily involve the modulation of AMPK, NF-κB, TGF-β, NFR2, JNK, and other pathways, thereby attenuating hepatic fat accumulation, inflammation, inhibition of hepatic stellate cell activation, and promoting apoptosis in hepatocellular carcinoma cells. Furthermore, it provides insights into the safety profile and current applications of ginsenosides, thereby facilitating their clinical development. Consequently, ginsenosides present promising prospects for liver disease management, underscoring their potential as valuable therapeutic agents in this context.
Collapse
Affiliation(s)
- Shiyan Shang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Singh G, Rathee J, Triveni, Jain N, Nagaich U, Kaul S, Pandey M, Gorain B. Nano-approaches and Recent Advancements in Strategies to Combat Challenges Associated with Thyroid Cancer Therapies. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:381-394. [PMID: 37849227 DOI: 10.2174/0118722105257210230929083126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 10/19/2023]
Abstract
The prevalence of thyroid cancer (TC) is more common in women and is up to 43% in patients aged between 45-65 years. The battle against TC is hampered by the lack of effective diagnostic and therapeutic approaches. The effectiveness of surgical procedures, such as thyroidectomy and nutraceutical treatments, are accompanied by several difficulties and still require further research. Alternatively, the DNA-damaging traditional model of chemotherapy is linked to poor solubility, untoward systemic effects, and associated cytotoxicity, instituting an urgent need to establish a specialized, factual, and reliable delivery tool. In order to overcome the limitations of conventional delivery systems, nanotechnology-based delivery tools have shown the potential of articulating endless inherent implementations. The probable benefits of emerging nanotechnology-based diagnostic techniques include rapid screening and early illness diagnosis, which draws investigators to investigate and assess the possibility of this treatment for TC. Subsequently, organic (e.g., liposomes, polymer-based, and dendrimers) and inorganic (e.g., gold, carbon-based, mesoporous silica, magnetic, and quantum dots) NPs and hybrids thereof (liposome-silica, chitosan-carbon, and cell membrane-coated) have been projected for TC biomarker screening, therapy, and detection, providing better outcomes than traditional diagnostic and treatment techniques. Therefore, this review aims to offer a broad perspective on nanoplatform in TC, accompanied by present and potential future treatment options and screening techniques; including the innovative patents utilized in the realm of thyroid cancer using nanocarriers. The goal of cancer therapy has traditionally been to "search a thorn in a hayloft"; therefore, this article raises the possibility of treating TC using nano-oncotherapeutics, which might be useful clinically and will encourage future researchers to explore this tool's potential and drawbacks.
Collapse
Affiliation(s)
- Gurmehar Singh
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Jatin Rathee
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Triveni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| |
Collapse
|
5
|
Gulwani D, Upadhyay P, Goel R, Sarangthem V, Singh TD. Nanomedicine mediated thyroid cancer diagnosis and treatment: an approach from generalized to personalized medicine. Discov Oncol 2024; 15:789. [PMID: 39692930 DOI: 10.1007/s12672-024-01677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024] Open
Abstract
Thyroid cancer (TC) being the common endocrine malignancy is glooming steadily due to its poor prognosis. The treatment strategies of surgery, radiotherapy, and conventional chemotherapy are providing unsatisfactory output. However, combination therapy can negotiate the worse prognosis to the better, where chemoradiotherapy, radiotherapy with surgery, or dual chemotherapeutic drugs are being glorified. Chemotherapy includes the use of doxorubicin or taxanes generally with platinum-based drugs viz. cisplatin or carboplatin that are administered alone or along with multitarget tyrosine kinase inhibitors viz. Lenvatinib, Sorafenib, Sunitinib, Vandetanib, Pyrazolo-pyrimidine compounds, etc., single target tyrosine kinase inhibitors like Dabrafenib plus Trametinib and Vemurafenib against BRAF, Gefitinib against EGFR, Everolimus against mTOR, vascular disruptors like Fosbretabulin, and immunotherapy with viz. Spartalizumab and Pembrolizumab, are anti-PD-1/PD-L1 molecules. Hence, several trials are currently evaluating the possible beneficial role of combinatorial therapy in TC. Since TC is the outcome of multiple genetic alterations, it necessitates targeting the multiple factors in a single shot. These combination strategies for systemically delivering therapeutic drugs seem feasible only with the help of theranostic. To date, nanoparticle-based drug delivery systems (NDDS) have devoted themselves to diagnosis, bioimaging, imaging-assisted surgery, and therapy with high success rates. The ease of handling hybrid technologies is also selectively admirable. However, in this review, we have summarized the sequential progression of chemotherapeutic drugs to NDDS designed for Personalized Medicine (PM) against TC. Personalized medicine is an ever-growing field that will be explored in future discoveries in biomedicine, particularly cancer theranostics. Hence, our review presents a closer view of NDDS as a personalized treatment for TC. We have also discussed the primary challenges facing NDDS in meeting excellence in PM.
Collapse
Affiliation(s)
- Deepak Gulwani
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Upadhyay
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Ridhima Goel
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Vijaya Sarangthem
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
- Department of Biochemistry and Cell Biology, School of Medicine, Cell and Matrix Research Institute, Kyungpook National University, Daegu, 41944, Korea
| | - Thoudam Debraj Singh
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
6
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
7
|
Wang J, Tan J, Wu B, Wu R, Han Y, Wang C, Gao Z, Jiang D, Xia X. Customizing cancer treatment at the nanoscale: a focus on anaplastic thyroid cancer therapy. J Nanobiotechnology 2023; 21:374. [PMID: 37833748 PMCID: PMC10571362 DOI: 10.1186/s12951-023-02094-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/15/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare but highly aggressive kind of thyroid cancer. Various therapeutic methods have been considered for the treatment of ATC, but its prognosis remains poor. With the advent of the nanomedicine era, the use of nanotechnology has been introduced in the treatment of various cancers and has shown great potential and broad prospects in ATC treatment. The current review meticulously describes and summarizes the research progress of various nanomedicine-based therapeutic methods of ATC, including chemotherapy, differentiation therapy, radioiodine therapy, gene therapy, targeted therapy, photothermal therapy, and combination therapy. Furthermore, potential future challenges and opportunities for the currently developed nanomedicines for ATC treatment are discussed. As far as we know, there are few reviews focusing on the nanomedicine of ATC therapy, and it is believed that this review will generate widespread interest from researchers in a variety of fields to further expedite preclinical research and clinical translation of ATC nanomedicines.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Jie Tan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruolin Wu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Yanmei Han
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Chenyang Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Zairong Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| |
Collapse
|
8
|
Xie X, Zhang N, Li X, Huang H, Peng C, Huang W, Foster LJ, He G, Han B. Small-molecule dual inhibitors targeting heat shock protein 90 for cancer targeted therapy. Bioorg Chem 2023; 139:106721. [PMID: 37467620 DOI: 10.1016/j.bioorg.2023.106721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Heat shock protein 90, also known as Hsp90, is an extensively preserved molecular chaperone that performs a critical function in organizing various biological pathways and cellular operations. As a potential drug target, Hsp90 is closely linked to cancer. Hsp90 inhibitors are a class of drugs that have been extensively studied in preclinical models and have shown promise in a variety of diseases, especially cancer. However, Hsp90 inhibitors have encountered several challenges in clinical development, such as low efficacy, toxicity, or drug resistance, few Hsp90 small molecule inhibitors have been approved worldwide. Nonetheless, combining Hsp90 inhibitors with other tumor inhibitors, such as HDAC inhibitors, tubulin inhibitors, and Topo II inhibitors, has been shown to have synergistic antitumor effects. Consequently, the development of Hsp90 dual-target inhibitors is an effective strategy in cancer treatment, as it enhances potency while reducing drug resistance. This article provides an overview of Hsp90's domain structure and biological functions, as well as a discussion of the design, discovery, and structure-activity relationships of Hsp90 dual inhibitors, aiming to provide insights into clinical drug research from a medicinal chemistry perspective and discover novel Hsp90 dual inhibitors.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Dermatology & Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - He Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada.
| | - Gu He
- Department of Dermatology & Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Li L, Wang Z, Guo H, Lin Q. Nanomaterials: a promising multimodal theranostics platform for thyroid cancer. J Mater Chem B 2023; 11:7544-7566. [PMID: 37439780 DOI: 10.1039/d3tb01175e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Thyroid cancer is the most prevalent malignant neoplasm of the cervical region and endocrine system, characterized by a discernible upward trend in incidence over recent years. Ultrasound-guided fine needle aspiration is the current standard for preoperative diagnosis of thyroid cancer, albeit with limitations and a certain degree of false-negative outcomes. Although differentiated thyroid carcinoma generally exhibits a favorable prognosis, dedifferentiation is associated with an unfavorable clinical course. Anaplastic thyroid cancer, characterized by high malignancy and aggressiveness, remains an unmet clinical need with no effective treatments available. The emergence of nanomedicine has opened new avenues for cancer theranostics. The unique features of nanomaterials, including multifunctionality, modifiability, and various detection modes, enable non-invasive and convenient thyroid cancer diagnosis through multimodal imaging. For thyroid cancer treatment, nanomaterial-based photothermal therapy or photodynamic therapy, combined with chemotherapy, radiotherapy, or gene therapy, holds promise in reducing invasiveness and prolonging patient survival or alleviating pain in individuals with anaplastic thyroid carcinoma. Furthermore, nanomaterials enable simultaneous diagnosis and treatment of thyroid cancer. This review aims to provide a comprehensive survey of the latest developments in nanomaterials for thyroid cancer diagnosis and treatment and encourage further research in developing innovative and effective theranostic approaches for thyroid cancer.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China.
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Hui Guo
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
10
|
The ways for ginsenoside Rh2 to fight against cancer: the molecular evidences in vitro and in vivo. J Ginseng Res 2023; 47:173-182. [PMID: 36926617 PMCID: PMC10014223 DOI: 10.1016/j.jgr.2022.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a global public health issue that becomes the second primary cause of death globally. Considering the side effects of radio- or chemo-therapy, natural phytochemicals are promising alternatives for therapeutic interventions to alleviate the side effects and complications. Ginsenoside Rh2 (GRh2) is the main phytochemical extracted from Panax ginseng C.A. Meyer with anticancer activity. GRh2 could induce apoptosis and autophagy of cancer cells and inhibit proliferation, metastasis, invasion, and angiogenesis in vitro and in vivo. In addition, GRh2 could be used as an adjuvant to chemotherapeutics to enhance the anticancer effect and reverse the adverse effects. Here we summarized the understanding of the molecular mechanisms underlying the anticancer effects of GRh2 and proposed future directions to promote the development and application of GRh2.
Collapse
|
11
|
Wang Y, Li J, Xia L. Plant-derived natural products and combination therapy in liver cancer. Front Oncol 2023; 13:1116532. [PMID: 36865794 PMCID: PMC9971944 DOI: 10.3389/fonc.2023.1116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Liver cancer is one of the malignant cancers globally and seriously endangers human health because of its high morbidity and mortality. Plant-derived natural products have been evaluated as potential anticancer drugs due to low side effects and high anti-tumor efficacy. However, plant-derived natural products also have defects of poor solubility and cumbersome extraction process. In recent years, a growing numbers of plant derived natural products have been used in combination therapy of liver cancer with conventional chemotherapeutic agents, which has improved clinical efficacy through multiple mechanisms, including inhibition of tumor growth, induction of apoptosis, suppression of angiogenesis, enhancement of immunity, reversal of multiple drug resistance and reduction of side effects. The therapeutic effects and mechanisms of plant-derived natural products and combination therapy on liver cancer are reviewed to provide references for developing anti-liver-cancer strategies with high efficacy and low side effects.
Collapse
Affiliation(s)
- Yuqin Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jinyao Li
- *Correspondence: Jinyao Li, ; Lijie Xia,
| | - Lijie Xia
- *Correspondence: Jinyao Li, ; Lijie Xia,
| |
Collapse
|
12
|
Fan M, Shan M, Lan X, Fang X, Song D, Luo H, Wu D. Anti-cancer effect and potential microRNAs targets of ginsenosides against breast cancer. Front Pharmacol 2022; 13:1033017. [PMID: 36278171 PMCID: PMC9581320 DOI: 10.3389/fphar.2022.1033017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumor, the incidence of which has increased worldwide in recent years. Ginsenosides are the main active components of Panax ginseng C. A. Mey., in vitro and in vivo studies have confirmed that ginsenosides have significant anti-cancer activity, including BC. It is reported that ginsenosides can induce BC cells apoptosis, inhibit BC cells proliferation, migration, invasion, as well as autophagy and angiogenesis, thereby suppress the procession of BC. In this review, the therapeutic effects and the molecular mechanisms of ginsenosides on BC will be summarized. And the combination strategy of ginsenosides with other drugs on BC will also be discussed. In addition, epigenetic changes, especially microRNAs (miRNAs) targeted by ginsenosides in the treatment of BC are clarified.
Collapse
Affiliation(s)
- Meiling Fan
- Changchun University of Chinese Medicine, Changchun, China
| | - Mengyao Shan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Dimeng Song
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- *Correspondence: Haoming Luo, ; Donglu Wu,
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Haoming Luo, ; Donglu Wu,
| |
Collapse
|
13
|
Li Y, Deng G, Hu X, Li C, Wang X, Zhu Q, Zheng K, Xiong W, Wu H. Recent advances in mesoporous silica nanoparticle-based targeted drug-delivery systems for cancer therapy. Nanomedicine (Lond) 2022; 17:1253-1279. [PMID: 36250937 DOI: 10.2217/nnm-2022-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Targeted drug-delivery systems are a growing research topic in tumor treatment. In recent years, mesoporous silica nanoparticles (MSNs) have been extensively studied and applied in noninvasive and biocompatible drug-delivery systems for tumor therapy due to their outstanding advantages, which include high surface area, large pore volume, tunable pore size, easy surface modification and stable framework. The advances in the application of MSNs for anticancer drug targeting are covered and highlighted in this review, and the challenges and prospects of MSN-based targeted drug-delivery systems are discussed. This review provides new insights for researchers interested in targeted drug-delivery systems against cancer.
Collapse
Affiliation(s)
- Ying Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Guoxing Deng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China.,School of Pharmacy, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xianlong Hu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chenyang Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xiaodong Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Qinchang Zhu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Wei Xiong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| |
Collapse
|
14
|
Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022; 51:5365-5451. [PMID: 35642539 PMCID: PMC9252171 DOI: 10.1039/d1cs00659b] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The present review details a chronological description of the events that took place during the development of mesoporous materials, their different synthetic routes and their use as drug delivery systems. The outstanding textural properties of these materials quickly inspired their translation to the nanoscale dimension leading to mesoporous silica nanoparticles (MSNs). The different aspects of introducing pharmaceutical agents into the pores of these nanocarriers, together with their possible biodistribution and clearance routes, would be described here. The development of smart nanocarriers that are able to release a high local concentration of the therapeutic cargo on-demand after the application of certain stimuli would be reviewed here, together with their ability to deliver the therapeutic cargo to precise locations in the body. The huge progress in the design and development of MSNs for biomedical applications, including the potential treatment of different diseases, during the last 20 years will be collated here, together with the required work that still needs to be done to achieve the clinical translation of these materials. This review was conceived to stand out from past reports since it aims to tell the story of the development of mesoporous materials and their use as drug delivery systems by some of the story makers, who could be considered to be among the pioneers in this area.
Collapse
Affiliation(s)
- María Vallet-Regí
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Lozano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Montserrat Colilla
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
15
|
Wang C, Li N, Li Y, Hou S, Zhang W, Meng Z, Wang S, Jia Q, Tan J, Wang R, Zhang R. Engineering a HEK-293T exosome-based delivery platform for efficient tumor-targeting chemotherapy/internal irradiation combination therapy. J Nanobiotechnology 2022; 20:247. [PMID: 35642064 PMCID: PMC9153154 DOI: 10.1186/s12951-022-01462-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022] Open
Abstract
Exosomes are nanoscale monolayer membrane vesicles that are actively endogenously secreted by mammalian cells. Currently, multifunctional exosomes with tumor-targeted imaging and therapeutic potential have aroused widespread interest in cancer research. Herein, we developed a multifunctional HEK-293T exosome-based targeted delivery platform by engineering HEK-293T cells to express a well-characterized exosomal membrane protein (Lamp2b) fused to the αv integrin-specific iRGD peptide and tyrosine fragments. This platform was loaded with doxorubicin (Dox) and labeled with radioiodine-131 (131I) using the chloramine-T method. iRGD exosomes showed highly efficient targeting and Dox delivery to integrin αvβ3-positive anaplastic thyroid carcinoma (ATC) cells as demonstrated by confocal imaging and flow cytometry in vitro and an excellent tumor-targeting capacity confirmed by single-photon emission computed tomography-computed tomography after labeling with 131I in vivo. In addition, intravenous injection of this vehicle delivered Dox and 131I specifically to tumor tissues, leading to significant tumor growth inhibition in an 8505C xenograft mouse model, while showing biosafety and no side effects. These as-developed multifunctional exosomes (denoted as Dox@iRGD-Exos-131I) provide novel insight into the current treatment of ATC and hold great potential for improving therapeutic efficacy against a wide range of integrin αvβ3-overexpressing tumors.
Collapse
Affiliation(s)
- Congcong Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266003, Shandong, China
| | - Ning Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yutian Li
- Department of Radiology, Qingdao Women and Children's Hospital, No. 217 Liaoyang West Road, Shibei District, Qingdao, 266000, Shandong, China
| | - Shasha Hou
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Wenxin Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Shen Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Renfei Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Ruiguo Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
16
|
Wang Q, Fan J, Bian X, Yao H, Yuan X, Han Y, Yan C. A microenvironment sensitive pillar[5]arene-based fluorescent probe for cell imaging and drug delivery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Wang Q, Bian X, Yao H, Yuan X, Han Y, Yan C. Utilization of pillar[5]arene-based ICT probes embedded into proteins for live-cell imaging and traceable drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112683. [DOI: 10.1016/j.msec.2022.112683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
|
18
|
Fröhlich E, Wahl R. Nanoparticles: Promising Auxiliary Agents for Diagnosis and Therapy of Thyroid Cancers. Cancers (Basel) 2021; 13:cancers13164063. [PMID: 34439219 PMCID: PMC8393380 DOI: 10.3390/cancers13164063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Thyroid cancer (TC) is rare relative to cancers of many other organs (breast, prostate, lung, and colon). The majority of TCs are differentiated tumors that are relatively easy to treat and have a good prognosis. However, for anaplastic TC, a rapidly growing and aggressive tumor, treatment is suboptimal because the effective drugs cause severe adverse effects. Drug delivery by nanocarriers can improve treatment by reducing side effects. This can either be mediated through better retention in the tumor tissue due to size (passive targeting) or through the attachment of specific molecules that zero in on the cancer cells (active targeting). Nanoparticles are already used for diagnosis and imaging of TC. For unresectable anaplastic TC, nanoparticle-based treatments, less suitable for deeply located cancers, could be useful, based on low-intensity focused ultrasound and near-infrared irradiation. All potential applications of nanoparticles in TC are still in the preclinical phase. Abstract Cancers of the endocrine system are rare. The majority are not highly malignant tumors. Thyroid cancer (TC) is the most common endocrine cancer, with differentiated papillary and follicular tumors occurring more frequently than the more aggressive poorly differentiated and anaplastic TC. Nanoparticles (NP) (mainly mesoporous silica, gold, carbon, or liposomes) have been developed to improve the detection of biomarkers and routine laboratory parameters (e.g., thyroid stimulating hormone, thyroglobulin, and calcitonin), tumor imaging, and drug delivery in TC. The majority of drug-loaded nanocarriers to be used for treatment was developed for anaplastic tumors because current treatments are suboptimal. Further, doxorubicin, sorafenib, and gemcitabine treatment can be improved by nanotherapy due to decreased adverse effects. Selective delivery of retinoic acid to TC cells might improve the re-differentiation of de-differentiated TC. The use of carbon NPs for the prevention of parathyroid damage during TC surgery does not show a clear benefit. Certain technologies less suitable for the treatment of deeply located cancers may have some potential for unresectable anaplastic carcinomas, namely those based on low-intensity focused ultrasound and near-infrared irradiation. Although some of these approaches yielded promising results in animal studies, results from clinical trials are currently lacking.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University Graz, 8036 Graz, Austria;
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Richard Wahl
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany
- Correspondence: ; Tel.: +49-7071-2983136
| |
Collapse
|
19
|
Liu R, Sun Y, Wu H, Ni S, Wang J, Li T, Bi Y, Feng X, Zhang C, Sun Y. In-depth investigation of the effective substances of traditional Chinese medicine formula based on the novel concept of co-decoction reaction-using Zuojin decoction as a model sample. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122869. [PMID: 34333214 DOI: 10.1016/j.jchromb.2021.122869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/03/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023]
Abstract
Zuojin decoction (ZJD) is a classic pair composed of Coptidis Rhizoma and Evodiae Fructus, which is suitable for treating gastrointestinal diseases and tumours, etc. In recent years, scientists have been widely focused on research into the treatment of liver cancer using ZJD; however, the effective substances have not yet been comprehensively elucidated. The difference between the co-decoction and the single decoction of ZJD is revealed in this paper based on the UPLC-QE-Orbitrap-MS, and the chemical components absorbed into the blood and liver of mice have been analyzed simultaneously. In addition, the combination of prototype components absorbed into the liver with liver cancer-related targets has been performed via molecular docking to explore the mechanism of ZJD in treating liver cancer. By comparing the co-decoction and single decoction of ZJD, 44 new components appeared during co-decoction and 76 known chemical compounds have been identified at the same time. It has been confirmed that 35 known components and 11 new components were absorbed into the blood. Furthermore, 20 known components were discovered from the sample of liver tissue. Molecular docking results showed that 3-O-feruloylquinic acid has good conjugation with Bcl-2, Stat3, mTOR, and mmp9. Catechin has the lowest binding energy with CDK6 and β-catenin. The study provides data for the further confirmation of the material basis and mechanism of ZJD in treating liver cancer, and provides a new idea for the researches on the compatibility mechanism of prescriptions of traditional Chinese medicine.
Collapse
Affiliation(s)
- Runhua Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shiting Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiaqi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tianyi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuelin Bi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xin Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chenning Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yikun Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
20
|
Wang K, Yu G, Lin J, Wang Z, Lu Q, Gu C, Yang T, Liu S, Yang H. Berberine Sensitizes Human Hepatoma Cells to Regorafenib via Modulating Expression of Circular RNAs. Front Pharmacol 2021; 12:632201. [PMID: 34220494 PMCID: PMC8248669 DOI: 10.3389/fphar.2021.632201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/08/2021] [Indexed: 01/10/2023] Open
Abstract
Regorafenib resistance is a key limiting factor in the treatment of advanced hepatocellular carcinoma (HCC). Increasing evidence has demonstrated that Berberine (BBR) can synergistically enhance the therapeutic effect of various chemotherapeutic agents. However, the contribution of BBR on regorafenib therapy remains unclear. The purpose of this study was to explore the combined treatment effect of berberine and regorafenib in HCC. We found that BBR enhanced the cytotoxicity of regorafenib in HCC cells. Compared with regorafenib alone, the combined treatment of BBR and regorafenib significantly inhibited the proliferation of HCC cells and induced cellular apoptosis. Meanwhile, the combined treatment group with BBR (10mg/kg/day) and regorafenib (5mg/kg/day) had a dramatic inhibitory effect on the growth of HCC xenograft tumors in nude mice. The increased apoptosis of xenograft tumors was seen in the combined treatment group. Moreover, a comprehensive circular RNA sequencing was performed to identify differentially expressed circRNAs in HCC cells after exposure to 100µM BBR and 5µM regorafenib. The volcano plot and scatter plot analyses revealed that there were 58 up-regulated and 19 down-regulated differentially expressed circRNAs between the combination treatment and control groups. Among them, the expression of hsa_circ_0032029 and hsa_circ_0008928 were up-regulated in HCC cells after treatment with 100µM BBR and 5µM regorafenib. Taken together, this study demonstrated that BBR enhanced the anti-HCC effect of regorafenib both in vitro and in vivo. The synergistic anti-tumor effect of BBR and regorafenib might be related to the up-regulation of hsa_circ_0032029 and hsa_circ_0008928 in HCC cells.
Collapse
Affiliation(s)
- Kunyuan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ganxiang Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaen Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhilei Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianting Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengxin Gu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Hong H, Baatar D, Hwang SG. Anticancer Activities of Ginsenosides, the Main Active Components of Ginseng. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8858006. [PMID: 33623532 PMCID: PMC7875636 DOI: 10.1155/2021/8858006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
Cancer incidence rate has been increasing drastically in recent years. One of the many cancer treatment methods is chemotherapy. Traditional medicine, in the form of complementary and alternative therapy, is actively used to treat cancer, and many herbs and active ingredients of such therapies are being intensely studied to integrate them into modern medicine. Ginseng is traditionally used as a nourishing tonic and for treating various diseases in Asian countries. The therapeutic potential of ginseng in modern medicine has been studied extensively; the main bioactive component of ginseng is ginsenosides, which have gathered attention, particularly for their prospects in the treatment of fatal diseases such as cancer. Ginsenosides displayed their anticancer and antimetastatic properties not only via restricting cancer cell proliferation, viability, invasion, and migration but also by promoting apoptosis, cell cycle arrest, and autophagy in several cancers, such as breast, brain, liver, gastric, and lung cancer. Additionally, ginsenosides can work synergistically with already existing cancer therapies. Thus, ginsenosides may be used alone or in combination with other pharmaceutical agents in new therapeutic strategies for cancer. To date however, there is little systematic summary available for the anticancer effects and therapeutic potential of ginsenosides. Therefore, we have reviewed and discussed all available literature in order to facilitate further research of ginsenosides in this manuscript.
Collapse
Affiliation(s)
- Heeok Hong
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Delgerzul Baatar
- Laboratory of Genetics, Institute of Biology, Mongolian Academy of Sciences, Peace Avenue 13330, Ulaanbaatar, Mongolia
| | - Seong Gu Hwang
- Department of Animal Life and Environmental Science, Hankyong National University, Anseong City 17579, Republic of Korea
| |
Collapse
|
22
|
Chen Y, Zhou X. Research progress of mTOR inhibitors. Eur J Med Chem 2020; 208:112820. [PMID: 32966896 DOI: 10.1016/j.ejmech.2020.112820] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/16/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a highly conserved Serine/Threonine (Ser/Thr) protein kinase, which belongs to phosphatidylinositol-3-kinase-related kinase (PIKK) protein family. mTOR exists as two types of protein complex: mTORC1 and mTORC2, which act as central controller regulating processes of cell metabolism, growth, proliferation, survival and autophagy. The mTOR inhibitors block mTOR signaling pathway, producing anti-inflammatory, anti-proliferative, autophagy and apoptosis induction effects, thus mTOR inhibitors are mainly used in cancer therapy. At present, mTOR inhibitors are divided into four categories: Antibiotic allosteric mTOR inhibitors (first generation), ATP-competitive mTOR inhibitors (second generation), mTOR/PI3K dual inhibitors (second generation) and other new mTOR inhibitors (third generation). In this article, these four categories of mTOR inhibitors and their structures, properties and some clinical researches will be introduced. Among them, we focus on the structure of mTOR inhibitors and try to analyze the structure-activity relationship. mTOR inhibitors are classified according to their chemical structure and their contents are introduced systematically. Moreover, some natural products that have direct or indirect mTOR inhibitory activities are introduced together. In this article, we analyzed the target, binding mode and structure-activity relationship of each generation of mTOR inhibitors and proposed two hypothetic scaffolds (the inverted-Y-shape scaffold and the C-shape scaffold) for the second generation of mTOR inhibitors. These findings may provide some help or reference for drug designing, drug modification or the future development of mTOR inhibitor.
Collapse
Affiliation(s)
- Yifan Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Xiaoping Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|