1
|
Gomatou G, Charpidou A, Li P, Syrigos N, Gkiozos I. Mechanisms of primary resistance to immune checkpoint inhibitors in NSCLC. Clin Transl Oncol 2025; 27:1426-1437. [PMID: 39307892 DOI: 10.1007/s12094-024-03731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/10/2024] [Indexed: 04/16/2025]
Abstract
Immune checkpoint inhibitors (ICIs) redefined the therapeutics of non-small cell lung cancer (NSCLC), leading to significant survival benefits and unprecedented durable responses. However, the majority of the patients develop resistance to ICIs, either primary or acquired. Establishing a definition of primary resistance to ICIs in different clinical scenarios is challenging and remains a work in progress due to the changing landscape of ICI-based regimens, mainly in the setting of early-stage NSCLC. The mechanisms of primary resistance to ICIs in patients with NSCLC include a plethora of pathways involving a cross-talk of the tumor cells, the tumor microenvironment and the host, leading to the development of an immunosuppressive phenotype. The optimal management of patients with NSCLC following primary resistance to ICIs represents a significant challenge in current thoracic oncology. Research in this field includes exploring other immunotherapeutic approaches, such as cancer vaccines, and investigating novel antibody-drug conjugates in patients with NSCLC.
Collapse
Affiliation(s)
- Georgia Gomatou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece.
| | - Andriani Charpidou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Nikolaos Syrigos
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Gkiozos
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Mitrakas AG, Kakouratos C, Lamprou I, Xanthopoulou E, Koukourakis MI. Oncogenic Mutations and the Tumor Microenvironment: Drivers of Non-Small Cell Lung Cancer Progression. Cancers (Basel) 2025; 17:853. [PMID: 40075700 PMCID: PMC11899603 DOI: 10.3390/cancers17050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Non-small cell lung cancer (NSCLC) is a major cause of cancer-related deaths globally. The study focuses on understanding the interplay between genetic mutations, cancer stem cells (CSCs), and the tumor microenvironment (TME) in driving NSCLC progression, resistance to therapies, and relapse. METHODS A systematic search was conducted in PubMed and Scopus databases to identify significant and valuable studies relevant to NSCLC, focusing on genetic mutations, CSCs, and the TME. Articles were selected based on their relevance, methodological severity, date of publication, and scientific soundness related to NSCLC biology and therapeutic strategies. This review synthesized findings from these sources to highlight key mechanisms and potential therapeutic interventions. RESULTS Mutations in critical genes in KRAS, EGFR, TP53, and other key genes interfere with stem cell regulation, promoting CSC-like behavior, resistance to therapy, and immune evasion. The tumor microenvironment (TME), including immune cells, fibroblasts, and extracellular matrix components, further supports tumor growth and reduction in treatment efficacy. Promising strategies, including CSC targeting, TME modulation, and the development of novel biomarkers, have shown potential in preclinical and clinical studies. CONCLUSIONS The association between genetic alterations, CSCs, the TME, and other cellular pathways-including cell metabolism and immune evasion-plays a crucial role in therapy resistance, highlighting the need for comprehensive treatment strategies. The combination of genomic profiling with TME-targeting therapies could lead to personalized treatment approaches, offering hope for better clinical outcomes and reduced mortality in NSCLC patients.
Collapse
Affiliation(s)
- Achilleas G. Mitrakas
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.K.); (I.L.); (E.X.)
| | | | | | | | - Michael I. Koukourakis
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.K.); (I.L.); (E.X.)
| |
Collapse
|
3
|
Huang X, Chen W, Wang Y, Shytikov D, Wang Y, Zhu W, Chen R, He Y, Yang Y, Guo W. Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control. Front Med 2025; 19:23-52. [PMID: 39745621 DOI: 10.1007/s11684-024-1107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/18/2024] [Indexed: 02/27/2025]
Abstract
Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy. These subpopulations, e.g., cancer stem-like cells, cancer cells with epithelial-to-mesenchymal transition, and drug-tolerant persisters, are protected by their resistance traits at cellular and molecular levels. This review summarizes recent advances in the research on resistant populations and their resistance traits. NOTCH signaling, as a central regulator of nongenetic resistance, is discussed with a special focus on its canonical maintenance of resistant cancer cells and noncanonical regulation of their resistance traits. This novel view of canonical and noncanonical NOTCH signaling pathways is translated into our proposal of reshaping therapeutic strategies targeting NOTCH signaling in resistant cancer cells. We hope that this review will lead researchers to study the canonical and noncanonical arms of NOTCH signaling as an integrated resistant mechanism, thus promoting the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xianzhe Huang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wenwei Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanyan Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Dmytro Shytikov
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanwen Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wangyi Zhu
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Ruyi Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yuwei He
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanjia Yang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China.
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Biomedical and Health Translational Research Center of Zhejiang Province, Jiaxing, 314400, China.
| |
Collapse
|
4
|
Liao YY, Tsai CL, Huang HP. Optimizing Osimertinib for NSCLC: Targeting Resistance and Exploring Combination Therapeutics. Cancers (Basel) 2025; 17:459. [PMID: 39941826 PMCID: PMC11815769 DOI: 10.3390/cancers17030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, with epidermal growth factor receptor (EGFR) mutations present in a substantial proportion of patients. Third-generation EGFR tyrosine kinase inhibitors (EGFR TKI), exemplified by osimertinib, have dramatically improved outcomes by effectively targeting the T790M mutation-a primary driver of acquired resistance to earlier-generation EGFR TKI. Despite these successes, resistance to third-generation EGFR TKIs inevitably emerges. Mechanisms include on-target mutations such as C797S, activation of alternative pathways like MET amplification, histologic transformations, and intricate tumor microenvironment (TME) alterations. These resistance pathways are compounded by challenges in tolerability, adverse events, and tumor heterogeneity. In light of these hurdles, this review examines the evolving landscape of combination therapies designed to enhance or prolong the effectiveness of third-generation EGFR TKIs. We explore key strategies that pair osimertinib with radiotherapy, anti-angiogenic agents, immune checkpoint inhibitors, and other molecularly targeted drugs, and we discuss the biological rationale, preclinical evidence, and clinical trial data supporting these approaches. Emphasis is placed on how these combinations may circumvent diverse resistance mechanisms, improve survival, and maintain a favorable safety profile. By integrating the latest findings, this review aims to guide clinicians and researchers toward more individualized and durable treatment options, ultimately enhancing both survival and quality of life for patients with EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Yan-You Liao
- Department of Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Chia-Luen Tsai
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| |
Collapse
|
5
|
Ibrahim S, Shenoy S, Kateel R, Hegde S, Parida A, Samantaray L. Navigating the complexity of BRAF mutations in non-small cell lung cancer: current insights and future prospects. Multidiscip Respir Med 2024; 19:992. [PMID: 39545749 PMCID: PMC11614001 DOI: 10.5826/mrm.2024.992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/02/2024] [Indexed: 11/17/2024] Open
Abstract
There are many challenges that are faced in the treatment of Non-Small Cell Lung Cancer (NSCLC) due to the complexities associated with the tumor. Association of different types of mutations are one of the major complexities. Among these mutations, BRAF mutations are significantly gathering more attention due to their impact on disease progression and therapeutic response. This review provides an analysis of the current understanding of BRAF mutations in NSCLC, focusing on the molecular intricacies, clinical implications, and therapeutic advancements. The article explores the diverse spectrum of BRAF mutations, highlighting the prevalence of specific mutations such as V600E and non-V600E alterations. The review also highlights the intricate signalling pathways influenced by BRAF mutations, shedding light on their role in tumorigenesis and metastasis. Therapeutically, we critically evaluate the existing targeted therapies tailored for BRAF-mutant NSCLC, addressing their efficacy, limitations, and emerging resistance mechanisms. Furthermore, we outline ongoing clinical trials and promising investigational agents that hold potential for reshaping the treatment of NSCLC. This review provides comprehensive current information about the role of BRAF mutations in NSCLC. Understanding the molecular diversity, clinical implications, and therapeutic strategies associated with BRAF-mutant NSCLC is crucial for optimizing patient outcomes and steering the direction of future research in this evolving field.
Collapse
Affiliation(s)
- Sufyan Ibrahim
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma Center, Oklahoma City, OK, USA
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ramya Kateel
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shreya Hegde
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Amrita Parida
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | |
Collapse
|
6
|
Pluchino M, Testi I, Minari R, Dodi A, Airò G, Mazzaschi G, Verzè M, Adorni A, Gnetti L, Azzoni C, Lagrasta CAM, Pecci F, Tiseo M. MET alterations as resistance mechanisms of dabrafenib-trametinib in BRAF p.V600E mutated non-small cell lung cancer patient. Anticancer Drugs 2024; 35:761-763. [PMID: 39115059 DOI: 10.1097/cad.0000000000001623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The combination of BRAF and MEK inhibitors demonstrated significant clinical benefit in patients with BRAF-mutant non-small cell lung cancer (NSCLC). However, the molecular mechanisms of acquired resistance to BRAF and MEK inhibition in NSCLC are still unknown. Herein, we report a case of a 76-year-old man with a history of smoking who was diagnosed with BRAF V600E-mutant lung adenocarcinoma (PD-L1 > 50%) and subsequently candidate to first-line therapy with pembrolizumab. After 18 months since the start of immunotherapy, computed tomography scan showed disease progression and a second-line therapy with dabrafenib and trametinib was initiated. Seven months later, due to a suspect disease progression, a left supraclavicular lymphadenectomy was performed and next-generation sequencing analysis revealed the appearance of MET exon 14 skipping mutation, while fluorescence in situ hybridization analysis showed MET amplification. The patient is still on BRAF and MEK inhibitor treatment. Our case highlights the relevance of performing tumor tissue rebiopsy at the time of progression during treatment with BRAF/MEK inhibition with the aim of identifying putative mechanisms of resistance.
Collapse
Affiliation(s)
- Monica Pluchino
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| | - Irene Testi
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| | - Roberta Minari
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
| | - Alessandra Dodi
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona
| | - Giulia Airò
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| | - Giulia Mazzaschi
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| | - Michela Verzè
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| | - Alessia Adorni
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| | - Letizia Gnetti
- Oncology and Hematology Department, Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Cinzia Azzoni
- Department of Medicine and Surgery, University of Parma, Parma
- Oncology and Hematology Department, Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Costanza Anna Maria Lagrasta
- Department of Medicine and Surgery, University of Parma, Parma
- Oncology and Hematology Department, Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Federica Pecci
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| | - Marcello Tiseo
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| |
Collapse
|
7
|
Imyanitov EN, Mitiushkina NV, Kuligina ES, Tiurin VI, Venina AR. Pathways and targeting avenues of BRAF in non-small cell lung cancer. Expert Opin Ther Targets 2024; 28:613-622. [PMID: 38941191 DOI: 10.1080/14728222.2024.2374742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024]
Abstract
INTRODUCTION BRAF is a serine-threonine kinase implicated in the regulation of MAPK signaling cascade. BRAF mutation-driven activation occurs in approximately 2-4% of treatment-naive non-small cell carcinomas (NSCLCs). BRAF upregulation is also often observed in tumors with acquired resistance to receptor tyrosine kinase inhibitors (TKIs). AREAS COVERED This review describes the spectrum of BRAF mutations and their functional roles, discusses treatment options available for BRAF p.V600 and non-V600 mutated NSCLCs, and identifies some gaps in the current knowledge. EXPERT OPINION Administration of combined BRAF/MEK inhibitors usually produces significant, although often a short-term, benefit to NSCLC patients with BRAF V600 (class 1) mutations. There are no established treatments for BRAF class 2 (L597, K601, G464, G469A/V/R/S, fusions, etc.) and class 3 (D594, G596, G466, etc.) mutants, which account for up to two-thirds of BRAF-driven NSCLCs. Many important issues related to the use of immune therapy for the management of BRAF-mutated NSCLC deserve further investigation. The rare occurrence of BRAF mutations in NSCLC is compensated by high overall incidence of lung cancer disease; therefore, clinical studies on BRAF-associated NSCLC are feasible.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia
| | - Natalia V Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Ekatherina Sh Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Vladislav I Tiurin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Aigul R Venina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| |
Collapse
|
8
|
Ramos R, Moura CS, Costa M, Lamas NJ, Correia R, Garcez D, Pereira JM, Sousa C, Vale N. Enhancing Lung Cancer Care in Portugal: Bridging Gaps for Improved Patient Outcomes. J Pers Med 2024; 14:446. [PMID: 38793028 PMCID: PMC11121920 DOI: 10.3390/jpm14050446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Lung cancer has the highest incidence and cancer-related mortality worldwide. In Portugal, it ranks as the fourth most common cancer, with nearly 6000 new cases being diagnosed every year. Lung cancer is the main cause of cancer-related death among males and the third cause of cancer-related death in females. Despite the globally accepted guidelines and recommendations for what would be the ideal path for a lung cancer patient, several challenges occur in real clinical management across the world. The recommendations emphasize the importance of adequate screening of high-risk individuals, a precise tumour biopsy, and an accurate final diagnosis to confirm the neoplastic nature of the nodule. A detailed histological classification of the lung tumour type and a comprehensive molecular characterization are of utmost importance for the selection of an efficacious and patient-directed therapeutic approach. However, in the context of the Portuguese clinical organization and the national healthcare system, there are still several gaps in the ideal pathway for a lung cancer patient, involving aspects ranging from the absence of a national lung cancer screening programme through difficulties in histological diagnosis and molecular characterization to challenges in therapeutic approaches. In this manuscript, we address the most relevant weaknesses, presenting several proposals for potential solutions to improve the management of lung cancer patients, helping to decisively improve their overall survival and quality of life.
Collapse
Affiliation(s)
- Raquel Ramos
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
| | - Conceição Souto Moura
- Pathology Laboratory, Unilabs Portugal, Rua Manuel Pinto de Azevedo 173, 4100-321 Porto, Portugal;
| | - Mariana Costa
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
| | - Nuno Jorge Lamas
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
- Anatomic Pathology Service, Pathology Department, Centro Hospitalar Universitário de Santo António (CHUdSA), Largo Professor Abel Salazar, 4099-001 Porto, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, Rua da Universidade, 4710-057 Braga, Portugal
| | - Renato Correia
- Technology & Innovation Department, Unilabs Portugal, Rua Manuel Pinto de Azevedo 173, 4100-321 Porto, Portugal; (R.C.); (D.G.)
| | - Diogo Garcez
- Technology & Innovation Department, Unilabs Portugal, Rua Manuel Pinto de Azevedo 173, 4100-321 Porto, Portugal; (R.C.); (D.G.)
| | - José Miguel Pereira
- Radiology Department, Unilabs Portugal, Rua de Diogo Botelho 485, 4150-255 Porto, Portugal;
| | - Carlos Sousa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
9
|
Karachaliou A, Kotteas E, Fiste O, Syrigos K. Emerging Therapies in Kirsten Rat Sarcoma Virus (+) Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:1447. [PMID: 38672529 PMCID: PMC11048139 DOI: 10.3390/cancers16081447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Kirsten rat sarcoma virus (KRAS) is the most frequently found oncogene in human cancers, including non-small-cell lung cancer (NSCLC). For many years, KRAS was considered "undruggable" due to its structure and difficult targeting. However, the discovery of the switch II region in the KRAS-G12C-mutated protein has changed the therapeutic landscape with the design and development of novel direct KRAS-G12C inhibitors. Sotorasib and adagrasib are FDA-approved targeted agents for pre-treated patients with KRAS-G12C-mutated NSCLC. Despite promising results, the efficacy of these novel inhibitors is limited by mechanisms of resistance. Ongoing studies are evaluating combination strategies for overcoming resistance. In this review, we summarize the biology of the KRAS protein and the characteristics of KRAS mutations. We then present current and emerging therapeutic approaches for targeting KRAS mutation subtypes intending to provide individualized treatment for lung cancer harboring this challenging driver mutation.
Collapse
Affiliation(s)
- Anastasia Karachaliou
- Oncology Unit, Third Department of Internal Medicine and Laboratory, Medical School, National and Kapodistrian University of Athens, “Sotiria” General Hospital, 11527 Athens, Greece; (E.K.); (O.F.); (K.S.)
| | | | | | | |
Collapse
|
10
|
Fareed A, Amir N, Ajaz H, Sohail A, Vaid R, Farhat S. Advances in BRAF-targeted therapies for non-small cell lung cancer: the promise of encorafenib and binimetinib. Int J Surg 2024; 110:1891-1893. [PMID: 38215251 PMCID: PMC11020025 DOI: 10.1097/js9.0000000000001051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024]
Affiliation(s)
- Areeba Fareed
- Department of Medicine, Karachi Medical and Dental College
| | - Nabiha Amir
- Department of Medicine, Karachi Medical and Dental College
| | - Humna Ajaz
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Afra Sohail
- Department of Medicine, Karachi Medical and Dental College
| | - Rayyan Vaid
- Department of Medicine, Karachi Medical and Dental College
| | - Solay Farhat
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
11
|
Mezquita L, Oulhen M, Aberlenc A, Deloger M, Aldea M, Honore A, Lecluse Y, Howarth K, Friboulet L, Besse B, Planchard D, Farace F. Resistance to BRAF inhibition explored through single circulating tumour cell molecular profiling in BRAF-mutant non-small-cell lung cancer. Br J Cancer 2024; 130:682-693. [PMID: 38177660 PMCID: PMC10876548 DOI: 10.1038/s41416-023-02535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Resistance mechanisms to combination therapy with dabrafenib plus trametinib remain poorly understood in patients with BRAFV600E-mutant advanced non-small-cell lung cancer (NSCLC). We examined resistance to BRAF inhibition by single CTC sequencing in BRAFV600E-mutant NSCLC. METHODS CTCs and cfDNA were examined in seven BRAFV600E-mutant NSCLC patients at failure to treatment. Matched tumour tissue was available for four patients. Single CTCs were isolated by fluorescence-activated cell sorting following enrichment and immunofluorescence (Hoechst 33342/CD45/pan-cytokeratins) and sequenced for mutation and copy number-alteration (CNA) analyses. RESULTS BRAFV600E was found in 4/4 tumour biopsies and 5/7 cfDNA samples. CTC mutations were mostly found in MAPK-independent pathways and only 1/26 CTCs were BRAFV600E mutated. CTC profiles encompassed the majority of matched tumour biopsy CNAs but 72.5% to 84.5% of CTC CNAs were exclusive to CTCs. Extensive diversity, involving MAPK, MAPK-related, cell cycle, DNA repair and immune response pathways, was observed in CTCs and missed by analyses on tumour biopsies and cfDNA. Driver alterations in clinically relevant genes were recurrent in CTCs. CONCLUSIONS Resistance was not driven by BRAFV600E-mutant CTCs. Extensive tumour genomic heterogeneity was found in CTCs compared to tumour biopsies and cfDNA at failure to BRAF inhibition, in BRAFV600E-mutant NSCLC, including relevant alterations that may represent potential treatment opportunities.
Collapse
Affiliation(s)
- Laura Mezquita
- Gustave Roussy, Université Paris-Saclay, Department of Medicine, F-94805, Villejuif, France
- Medical Oncology Department, Hospital Clinic of Barcelona, Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Marianne Oulhen
- Gustave Roussy, Université Paris-Saclay, "Rare Circulating Cells" Translational Platform, CNRS UMS3655-INSERM US23 AMMICA, F-94805, Villejuif, France
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France
| | - Agathe Aberlenc
- Gustave Roussy, Université Paris-Saclay, "Rare Circulating Cells" Translational Platform, CNRS UMS3655-INSERM US23 AMMICA, F-94805, Villejuif, France
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France
| | - Marc Deloger
- Gustave Roussy, Université Paris-Saclay, Bioinformatics Platform, CNRS UMS3655-INSERM US23 AMMICA, F-94805, Villejuif, France
| | - Mihaela Aldea
- Gustave Roussy, Université Paris-Saclay, Department of Medicine, F-94805, Villejuif, France
| | - Aurélie Honore
- Gustave Roussy, Université Paris-Saclay, Genomic Platform, CNRS UMS3655-INSERM US23 AMMICA, F-94805, Villejuif, France
| | - Yann Lecluse
- Gustave Roussy, Université Paris-Saclay, "Flow cytometry and Imaging" Platform, CNRS UMS3655-INSERM US23AMMICA, F-94805, Villejuif, France
| | | | - Luc Friboulet
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France
| | - Benjamin Besse
- Gustave Roussy, Université Paris-Saclay, Department of Medicine, F-94805, Villejuif, France
| | - David Planchard
- Gustave Roussy, Université Paris-Saclay, Department of Medicine, F-94805, Villejuif, France
| | - Françoise Farace
- Gustave Roussy, Université Paris-Saclay, "Rare Circulating Cells" Translational Platform, CNRS UMS3655-INSERM US23 AMMICA, F-94805, Villejuif, France.
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France.
| |
Collapse
|
12
|
Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K, Li W. Nanomedicine Combats Drug Resistance in Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308977. [PMID: 37968865 DOI: 10.1002/adma.202308977] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer.
Collapse
Affiliation(s)
- Xiuli Zheng
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiaohai Song
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Guonian Zhu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Haonan Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Jiankun Hu
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kai Xiao
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Weimin Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
13
|
Haynes D, Morgan EE, Chu EY. Cutaneous adverse reactions resulting from targeted cancer therapies: histopathologic and clinical findings. Hum Pathol 2023; 140:129-143. [PMID: 37146945 DOI: 10.1016/j.humpath.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Targeted cancer treatments-designed to interfere with specific molecular signals responsible for tumor survival and progression-have shown benefit over conventional chemotherapies but may lead to diverse cutaneous adverse effects. This review highlights clinically significant dermatologic toxicities and their associated histopathologic findings, resulting from various targeted cancer drugs. Case reports and series, clinical trials, reviews, and meta-analyses are included for analysis and summarized herein. Cutaneous side effects resulting from targeted cancer therapies were reported with incidences as high as 90% for certain medications, and reactions are often predictable based on mechanism(s) of action of a given drug. Common and important reaction patterns included: acneiform eruptions, neutrophilic dermatoses, hand-foot skin reaction, secondary cutaneous malignancies, and alopecia. Clinical and histopathologic recognition of these toxicities remains impactful for patient care.
Collapse
Affiliation(s)
- Dylan Haynes
- Department of Dermatology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric E Morgan
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Emily Y Chu
- Department of Dermatology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Corno C, Beretta GL, Perego P. Concomitant Targeting of MDM2 and MEK: A New Translatable Combinatorial Strategy? J Thorac Oncol 2023; 18:1111-1113. [PMID: 37599041 DOI: 10.1016/j.jtho.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 08/22/2023]
Affiliation(s)
- Cristina Corno
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
15
|
Janzic U, Shalata W, Szymczak K, Dziadziuszko R, Jakopovic M, Mountzios G, Płużański A, Araujo A, Charpidou A, Agbarya A. Real-World Experience in Treatment of Patients with Non-Small-Cell Lung Cancer with BRAF or cMET Exon 14 Skipping Mutations. Int J Mol Sci 2023; 24:12840. [PMID: 37629023 PMCID: PMC10454089 DOI: 10.3390/ijms241612840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BRAF and cMET exon 14 skipping are rare mutations of NSCLC. The treatment sequence in these cases for the first and second line is not clear. An international registry was created for patients with advanced NSCLC harboring BRAF or cMET exon 14 skipping mutations, diagnosed from January 2017 to June 2022. Clinicopathological and molecular data and treatment patterns were recorded. Data on 58 patients, from eight centers across five countries, were included in the final analysis. We found that 40 patients had the cMET exon 14 skipping mutation and 18 had the BRAF V600E mutation. In total, 53 and 28 patients received first- and second-line treatments, respectively, among which 52.8% received targeted therapy (TT) in the first line and 53.5% in the second line. The overall response rate (ORR) and disease control rate (DCR) for first-line treatment with TT vs. other treatment such as immune checkpoint inhibitors ± chemotherapy (IO ± CT) were 55.6% vs. 21.7% (p = 0.0084) and 66.7% vs. 39.1% (p = 0.04), respectively. The type of treatment in first-line TT vs. other affected time to treatment discontinuation (TTD) was 11.6 m vs. 4.6 m (p= 0.006). The overall survival for the whole group was 15.4 m and was not statistically affected by the type of treatment (19.2 m vs. 13.5 m; p = 0.83).
Collapse
Affiliation(s)
- Urska Janzic
- Department of Medical Oncology, University Clinic Golnik, 4204 Golnik, Slovenia
- Medical Faculty Ljubljana, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Walid Shalata
- The Legacy Heritage Cancer Center & Dr. Larry Norton Institute, Soroka Medical Center, Ben Gurion University, Beer Sheva 84105, Israel
| | - Katarzyna Szymczak
- Department of Oncology and Radiotherapy and Early Phase Clinical Trials Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Rafał Dziadziuszko
- Department of Oncology and Radiotherapy and Early Phase Clinical Trials Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Marko Jakopovic
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia
| | - Giannis Mountzios
- Clinical Trials Unit, Fourth Oncology Department, Henry Dunant Hospital Center, 115 26 Athens, Greece
| | - Adam Płużański
- Department of Lung Cancer and Chest Tumours, The Maria Skłodowska-Curie National Research Institute of Oncology, 00-001 Warsaw, Poland
| | - Antonio Araujo
- Department of Medical Oncology, CHUPorto—University Hospitalar Center of Porto, 4099-001 Porto, Portugal
| | - Andriani Charpidou
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Abed Agbarya
- Department of Oncology, Bnai-Zion Medical Center, 47 Golomb Avenue, Haifa 31048, Israel
| |
Collapse
|
16
|
Riely GJ, Smit EF, Ahn MJ, Felip E, Ramalingam SS, Tsao A, Johnson M, Gelsomino F, Esper R, Nadal E, Offin M, Provencio M, Clarke J, Hussain M, Otterson GA, Dagogo-Jack I, Goldman JW, Morgensztern D, Alcasid A, Usari T, Wissel P, Wilner K, Pathan N, Tonkovyd S, Johnson BE. Phase II, Open-Label Study of Encorafenib Plus Binimetinib in Patients With BRAFV600-Mutant Metastatic Non-Small-Cell Lung Cancer. J Clin Oncol 2023; 41:3700-3711. [PMID: 37270692 DOI: 10.1200/jco.23.00774] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023] Open
Abstract
PURPOSE The combination of encorafenib (BRAF inhibitor) plus binimetinib (MEK inhibitor) has demonstrated clinical efficacy with an acceptable safety profile in patients with BRAFV600E/K-mutant metastatic melanoma. We evaluated the efficacy and safety of encorafenib plus binimetinib in patients with BRAFV600E-mutant metastatic non-small-cell lung cancer (NSCLC). METHODS In this ongoing, open-label, single-arm, phase II study, patients with BRAFV600E-mutant metastatic NSCLC received oral encorafenib 450 mg once daily plus binimetinib 45 mg twice daily in 28-day cycles. The primary end point was confirmed objective response rate (ORR) by independent radiology review (IRR). Secondary end points included duration of response (DOR), disease control rate (DCR), progression-free survival (PFS), overall survival, time to response, and safety. RESULTS At data cutoff, 98 patients (59 treatment-naïve and 39 previously treated) with BRAFV600E-mutant metastatic NSCLC received encorafenib plus binimetinib. Median duration of treatment was 9.2 months with encorafenib and 8.4 months with binimetinib. ORR by IRR was 75% (95% CI, 62 to 85) in treatment-naïve and 46% (95% CI, 30 to 63) in previously treated patients; median DOR was not estimable (NE; 95% CI, 23.1 to NE) and 16.7 months (95% CI, 7.4 to NE), respectively. DCR after 24 weeks was 64% in treatment-naïve and 41% in previously treated patients. Median PFS was NE (95% CI, 15.7 to NE) in treatment-naïve and 9.3 months (95% CI, 6.2 to NE) in previously treated patients. The most frequent treatment-related adverse events (TRAEs) were nausea (50%), diarrhea (43%), and fatigue (32%). TRAEs led to dose reductions in 24 (24%) and permanent discontinuation of encorafenib plus binimetinib in 15 (15%) patients. One grade 5 TRAE of intracranial hemorrhage was reported. Interactive visualization of the data presented in this article is available at the PHAROS dashboard (https://clinical-trials.dimensions.ai/pharos/). CONCLUSION For patients with treatment-naïve and previously treated BRAFV600E-mutant metastatic NSCLC, encorafenib plus binimetinib showed a meaningful clinical benefit with a safety profile consistent with that observed in the approved indication in melanoma.
Collapse
Affiliation(s)
| | - Egbert F Smit
- Department of Pulmonary Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Myung-Ju Ahn
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Enriqueta Felip
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Anne Tsao
- MD Anderson Cancer Center, Houston, TX
| | - Melissa Johnson
- Tennessee Oncology, Sarah Cannon Research Institute, Nashville, TN
| | - Francesco Gelsomino
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Ernest Nadal
- Medical Oncology, Catalan Institute of Oncology, Barcelona, Spain
| | - Michael Offin
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Osimertinib Resistance: Molecular Mechanisms and Emerging Treatment Options. Cancers (Basel) 2023; 15:cancers15030841. [PMID: 36765799 PMCID: PMC9913144 DOI: 10.3390/cancers15030841] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The development of tyrosine kinase inhibitors (TKIs) targeting the mutant epidermal growth factor receptor (EGFR) protein initiated the success story of targeted therapies in non-small-cell lung cancer (NSCLC). Osimertinib, a third-generation EGFR-TKI, is currently indicated as first-line therapy in patients with NSCLC with sensitizing EGFR mutations, as second-line therapy in patients who present the resistance-associated mutation T790M after treatment with previous EGFR-TKIs, and as adjuvant therapy for patients with early stage resected NSCLC, harboring EGFR mutations. Despite durable responses in patients with advanced NSCLC, resistance to osimertinib, similar to other targeted therapies, inevitably develops. Understanding the mechanisms of resistance, including both EGFR-dependent and -independent molecular pathways, as well as their therapeutic potential, represents an unmet need in thoracic oncology. Interestingly, differential resistance mechanisms develop when osimertinib is administered in a first-line versus second-line setting, indicating the importance of selection pressure and clonal evolution of tumor cells. Standard therapeutic approaches after progression to osimertinib include other targeted therapies, when a targetable genetic alteration is detected, and cytotoxic chemotherapy with or without antiangiogenic and immunotherapeutic agents. Deciphering the when and how to use immunotherapeutic agents in EGFR-positive NSCLC is a current challenge in clinical lung cancer research. Emerging treatment options after progression to osimertinib involve combinations of different therapeutic approaches and novel EGFR-TKI inhibitors. Research should also be focused on the standardization of liquid biopsies in order to facilitate the monitoring of molecular alterations after progression to osimertinib.
Collapse
|
18
|
Wu J, Lin Z. Non-Small Cell Lung Cancer Targeted Therapy: Drugs and Mechanisms of Drug Resistance. Int J Mol Sci 2022; 23:ijms232315056. [PMID: 36499382 PMCID: PMC9738331 DOI: 10.3390/ijms232315056] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The advent of precision medicine has brought light to the treatment of non-small cell lung cancer (NSCLC), expanding the options for patients with advanced NSCLC by targeting therapy through genetic and epigenetic cues. Tumor driver genes in NSCLC patients have been uncovered one by one, including epidermal growth factor receptor (EGFR), mesenchymal lymphoma kinase (ALK), and receptor tyrosine kinase ROS proto-oncogene 1 (ROS1) mutants. Antibodies and inhibitors that target the critical gene-mediated signaling pathways that regulate tumor growth and development are anticipated to increase patient survival and quality of life. Targeted drugs continue to emerge, with as many as two dozen approved by the FDA, and chemotherapy and targeted therapy have significantly improved patient prognosis. However, resistance due to cancer drivers' genetic alterations has given rise to significant challenges in treating patients with metastatic NSCLC. Here, we summarized the main targeted therapeutic sites of NSCLC drugs and discussed their resistance mechanisms, aiming to provide new ideas for follow-up research and clues for the improvement of targeted drugs.
Collapse
|