1
|
Cochetti G, Guadagni L, Paladini A, Russo M, La Mura R, Vitale A, Saqer E, Mangione P, Esposito R, Gioè M, Pastore F, De Angelis L, Ricci F, Vannuccini G, Mearini E. An Evaluation of Serum miRNA in Renal Cell Carcinoma: A Systematic Review. Cancers (Basel) 2025; 17:816. [PMID: 40075664 PMCID: PMC11898939 DOI: 10.3390/cancers17050816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Background: In recent years, research has highlighted the importance of microRNAs (miRNAs) in the context of oncological diseases, including renal cell carcinoma (RCC). The aim of this systematic review of the literature was to analyze the main serum miRNAs involved in RCC and their potential diagnostic power. Methods: This systematic review was performed following the PROSPERO protocol CRD42024550709. Literature search strategies were developed composing strings with text words related to serum miRNA in RCC for PubMed, EMBASE and Clinicaltrial.gov. The studies enrolling adult populations with RCC and healthy controls measuring circulating miRNAs were included. Results: We found 500 records, and 26 papers were included after screening. Four studies found that miR-210, the most investigated miRNA, was overexpressed in RCC patients compared to controls, while one reported no statistical difference. The expression of some miRNAs was consistently lower in cases compared to healthy controls, such as miR-1-3p and miR-129-5p, while others (miR-221, miR-222, miR-224-5p and miR-1233) were consistently upregulated. Conclusions: Circulating miRNAs represent a promising avenue for the non-invasive diagnosis of RCC. Future research should focus on standardization, validation in larger cohorts and the development of multi-marker diagnostic panels to address these current limitations and pave the way for miRNA-based diagnostics in RCC.
Collapse
Affiliation(s)
| | | | - Alessio Paladini
- Urology Clinic, Department of Medicine and Surgery, Santa Maria della Misericordia Hospital, University of Perugia, 06129 Perugia, Italy; (G.C.); (L.G.); (M.R.); (R.L.M.); (A.V.); (E.S.); (P.M.); (R.E.); (M.G.); (F.P.); (L.D.A.); (F.R.); (G.V.); (E.M.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zuo Y, Li T, Yang S, Chen X, Tao X, Dong D, Liu F, Zhu Y. Contribution and expression of renal drug transporters in renal cell carcinoma. Front Pharmacol 2025; 15:1466877. [PMID: 40034145 PMCID: PMC11873565 DOI: 10.3389/fphar.2024.1466877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
Renal cell carcinoma (RCC) is a common substantive tumor. According to incomplete statistics, RCC incidence accounts for approximately 90% of renal malignant tumors, and is the second most prevalent major malignant tumor in the genitourinary system, following bladder cancer. Only 10%-15% of chemotherapy regimens for metastatic renal cell carcinoma (mRCC) are effective, and mRCC has a high mortality. Drug transporters are proteins located on the cell membrane that are responsible for the absorption, distribution, and excretion of drugs. Lots of drug transporters are expressed in the kidneys. Changes in carrier function weaken balance, cause disease, or modify the effectiveness of drug treatment. The changes in expression of these transporters during cancer pathology results in multi-drug resistance to cancer chemotherapy. In the treatment of RCC, the study of drug transporters helps to optimize treatment regimens, improve therapeutic effects, and reduce drug side effects. In this review, we summarize advances in the role of renal drug transporters in the genesis, progression, and treatment of RCC.
Collapse
Affiliation(s)
- Yawen Zuo
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tong Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fang Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Liu J, Zhang L, Wang Z, Li H, Wang B, Liu X. Prognostic value of miR-190a-5p in renal cell cancer and its regulatory effect on tumor progression. Int J Biol Markers 2024; 39:310-318. [PMID: 39415706 DOI: 10.1177/03936155241290251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
PURPOSE As a usual malignant tumor in urinary system, renal cell cancer is regulated by microRNAs (miRNAs). This study revealed the prognostic value and regulatory effect of miR-190a-5p in renal cell cancer patients. METHODS A total of 253 renal cell cancer patients were included for prognostic value analysis. The target gene of miR-190a-5p was detected by luciferase reporter assay. Cell Counting Kit-8 analysis and Transwell analysis were performed to explore the proliferation, removal capability, and invasiveness of 786-0 and A498 cells. Prognostic value was calculated by Kaplan-Meier curve and Cox regression analysis. RESULTS miR-190a-5p was more down-regulated in tumor tissues than in adjacent tissues. Renal cell cancer cases were differed as low and high groups ground on mean miR-190a-5p expression in tumor tissues. Overall survival probability was obviously high in patients with high miR-190a-5p level (log-rank test P = 0.011). Cox regression analysis revealed that miR-190a-5p expression (relative risk (RR) = 1.751, 95% confidence interval (CI) = 1.057-2.900, P = 0.030) and tumor node metastasis stage (RR = 1.719, 95% CI = 1.059-2.792, P = 0.028) were specialty indicators for poor renal cell cancer prognosis. GDF11 was directly targeting miR-190a-5p. Overexpressed miR-190a-5p could reduce the GDF11 expression, proliferation, removal capability, and invasiveness of renal cell cancer 786-0 and A498 cells. Elevated GDF11 could lead to a changeover of proliferation, removal capability, and invasiveness inhibition, which is induced by miR-190a-5p. CONCLUSION miR-190a-5p was reduced in renal cell cancer tissues, and predicted worse outcomes of renal cell cancer cases. Overexpressed miR-190a-5p could restrain the proliferation, removal capability, and invasiveness of renal cell cancer cells via suppressing GDF11.
Collapse
Affiliation(s)
- Jun Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lili Zhang
- Department of Laboratory Medicine, Huxi Affiliated Hospital of Jining Medical College (Shanxian Central Hospital), Heze, China
| | - Zhancheng Wang
- Department of Urology, Huxi Affiliated Hospital of Jining Medical College (Shanxian Central Hospital), Heze, China
| | - Hu Li
- Department of Urology, Huxi Affiliated Hospital of Jining Medical College (Shanxian Central Hospital), Heze, China
| | - Bo Wang
- Department of Urology, Huxi Affiliated Hospital of Jining Medical College (Shanxian Central Hospital), Heze, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Li X, Xiao W, Yang H, Zhang X. Exosome in renal cell carcinoma progression and implications for targeted therapy. Front Oncol 2024; 14:1458616. [PMID: 39296981 PMCID: PMC11408481 DOI: 10.3389/fonc.2024.1458616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Renal cell carcinoma is a urological malignancy with a high metastatic rate, while targeted therapy for renal cell carcinoma still has much room for improvement. Some cutting-edge researches have focused on exosome in cancer treatment and there are some breakthroughs in breast cancer, lung cancer, and pancreatic cancer. Up to now, exosome in renal cell carcinoma progression and implications for targeted therapy has been under research by scientists. In this review, we have summarized the structure, formation, uptake, functions, and detection of exosomes, classified the mechanisms of exosomes that cause renal cell carcinoma progression, and listed the promising utilization of exosomes in targeted therapy for renal cell carcinoma. In all, based on the mechanisms of exosomes causing renal cell carcinoma progression and borrowing the successful experience from renal cell carcinoma models and other cancers, exosomes will possibly be a promising target for therapy in renal cell carcinoma in the foreseeable future.
Collapse
Affiliation(s)
- Xinwei Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
5
|
Yao C, Liu X, Lu X, Wang L, Jia J, Li Z. Smartphone-Based Fluorescent Profiling of Quaternary MicroRNAs in Urine for Rapid Diagnosis of Urological Cancers Using a Multiplexed Isothermal Exponential Amplification Reaction. Anal Chem 2024; 96:419-426. [PMID: 38152877 DOI: 10.1021/acs.analchem.3c04461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Urological cancers such as bladder or prostate cancer represent one of the most malignant tumors that accounts for an extremely high mortality. However, conventionally standard diagnostics for urological cancers are hardly available in low-resource settings. We developed herein a hand-held fluorescent imaging platform by integrating a multiplexed isothermal exponential amplification reaction (EXPAR) with a microgel-enriched methodology for sensitive profiling of quaternary microRNAs (miRNAs) in urine and quick diagnosis of urological cancers at the early stage. The target miRNA mixtures in the urine underwent four parallel EXPARs without cross-reactivity, followed by surface concentration and hybridization by the encoded polyacrylamide microgels. This mix-and-read strategy allowed for one-pot analysis of several key miRNAs simultaneously and provided 5-fold enhancement in fluorescent detection sensitivities compared to the individual EXPAR-based assays. Four urinary miRNAs (let-7a, miRNA-155, -223, and -143) could be quantitatively determined in a wide linear range from 50 fM to 30 nM, with the limits of detection at femtomolar levels. Using a smartphone-based imaging microreader, healthy and cancerous cohorts with prostate, bladder, and renal cell cancers could be discriminated in 30 min with the accuracy >83% using linear discriminant analysis. The developed detection platform has proven to be a portable, noninvasive, and useful complement to the toolbox for miRNA-based liquid biopsies, which holds immense potential and advantage for regular and large-scale applications in early cancer diagnosis.
Collapse
Affiliation(s)
- Chanyu Yao
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518060, P. R. China
| | - Xueliang Liu
- School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan 453003, P. R. China
| | - Xiaohui Lu
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518060, P. R. China
| | - Lei Wang
- Department of Urology, Xinxiang Central Hospital, Xinxiang Medical College, 56 Jinsui Road, Xinxiang, Henan 453003, P. R. China
| | - Jia Jia
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P. R. China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
6
|
Chhabra R, Guergues J, Wohlfahrt J, Rockfield S, Espinoza Gonzalez P, Rego S, Park MA, Berglund AE, Stevens SM, Nanjundan M. Deregulated expression of the 14q32 miRNA cluster in clear cell renal cancer cells. Front Oncol 2023; 13:1048419. [PMID: 37139155 PMCID: PMC10150008 DOI: 10.3389/fonc.2023.1048419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/21/2023] [Indexed: 05/05/2023] Open
Abstract
Clear cell renal cell carcinomas (ccRCC) are characterized by arm-wide chromosomal alterations. Loss at 14q is associated with disease aggressiveness in ccRCC, which responds poorly to chemotherapeutics. The 14q locus contains one of the largest miRNA clusters in the human genome; however, little is known about the contribution of these miRNAs to ccRCC pathogenesis. In this regard, we investigated the expression pattern of selected miRNAs at the 14q32 locus in TCGA kidney tumors and in ccRCC cell lines. We demonstrated that the miRNA cluster is downregulated in ccRCC (and cell lines) as well as in papillary kidney tumors relative to normal kidney tissues (and primary renal proximal tubule epithelial (RPTEC) cells). We demonstrated that agents modulating expression of DNMT1 (e.g., 5-Aza-deoxycytidine) could modulate 14q32 miRNA expression in ccRCC cell lines. Lysophosphatidic acid (LPA, a lysophospholipid mediator elevated in ccRCC) not only increased labile iron content but also modulated expression of a 14q32 miRNA. Through an overexpression approach targeting a subset of 14q32 miRNAs (specifically at subcluster A: miR-431-5p, miR-432-5p, miR-127-3p, and miR-433-3p) in 769-P cells, we uncovered changes in cellular viability and claudin-1, a tight junction marker. A global proteomic approach was implemented using these miRNA overexpressing cell lines which uncovered ATXN2 as a highly downregulated target. Collectively, these findings support a contribution of miRNAs at 14q32 in ccRCC pathogenesis.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Jessica Wohlfahrt
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Stephanie Rockfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Pamela Espinoza Gonzalez
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Shanon Rego
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Margaret A. Park
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Stanley M. Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
7
|
Wang B, Li M, Li R. Identification and verification of prognostic cancer subtype based on multi-omics analysis for kidney renal papillary cell carcinoma. Front Oncol 2023; 13:1169395. [PMID: 37091151 PMCID: PMC10113630 DOI: 10.3389/fonc.2023.1169395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Background Identifying Kidney Renal Papillary Cell Carcinoma (KIRP) patients with high-risk, guiding individualized diagnosis and treatment of patients, and identifying effective prognostic targets are urgent problems to be solved in current research on KIRP. Methods In this study, data of multi omics for patients with KIRP were collected from TCGA database, including mRNAs, lncRNAs, miRNAs, data of methylation, and data of gene mutations. Data of multi-omics related to prognosis of patients with KIRP were selected for each omics level. Further, multi omics data related to prognosis were integrated into cluster analysis based on ten clustering algorithms using MOVICS package. The multi omics-based cancer subtype (MOCS) were compared on biological characteristics, immune microenvironmental cell abundance, immune checkpoint, genomic mutation, drug sensitivity using R packages, including GSVA, clusterProfiler, TIMER, CIBERSORT, CIBERSORT-ABS, quanTIseq, MCPcounter, xCell, EPIC, GISTIC, and pRRophetic algorithms. Results The top ten OS-related factors for KIRP patients were annotated. Patients with KIRP were divided into MOCS1, MOCS2, and MOCS3. Patients in the MOCS3 subtype were observed with shorter overall survival time than patients in the MOCS1 and MOCS2 subtypes. MOCS1 was negatively correlated with immune-related pathways, and we found global dysfunction of cancer-related pathways among the three MOCS subtypes. We evaluated the activity profiles of regulons among the three MOCSs. Most of the metabolism-related pathways were activated in MOCS2. Several immune microenvironmental cells were highly infiltrated in specific MOCS subtype. MOCS3 showed a significantly lower tumor mutation burden. The CNV occurrence frequency was higher in MOCS1. As for treatment, we found that these MOCSs were sensitive to different drugs and treatments. We also analyzed single-cell data for KIRP. Conclusion Based on a variety of algorithms, this study determined the risk classifier based on multi-omics data, which could guide the risk stratification and medication selection of patients with KIRP.
Collapse
Affiliation(s)
- Baodong Wang
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Mei Li
- Department of Laboratory Medicine, Shanxi Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
- *Correspondence: Rongshan Li,
| |
Collapse
|
8
|
Identification of m7G Methylation-Related miRNA Signature Associated with Survival and Immune Microenvironment Regulation in Uterine Corpus Endometrial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8776678. [DOI: 10.1155/2022/8776678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
Background. N7-methylguanosine (m7G) has been implicated in the development of cancer. The role of m7G-related miRNAs in the survival prediction of UCEC patients has not been investigated. Current research was the first to construct an m7G-related miRNA model to accurately predict the survival of patients with uterine corpus endometrial carcinoma (UCEC) and to explore immune cell infiltration and immune activity in the tumor microenvironment. Methods. RNA-seq data and clinical information of UCEC patients were derived from The Cancer Genome Atlas (TCGA) database. Using the TargetScan online database, we predicted miRNAs linked to the m7G-related genes and identified miRNAs which were significantly associated with the survival in UCEC patients and constructed a risk scoring model. The TCGA-UCEC cases were scored according to the risk model, and the high- and low-risk groups were divided by the median risk value. Gene enrichment analysis and immune cell infiltration and immune function analysis were performed using “clusterProfiler” and “GSVA” packages in R. Results. The survival prediction model consisted of 9 miRNAs, namely, hsa-miR-1301, hsa-miR-940, hsa-miR-592, hsa-miR-3170, hsa-miR-876, hsa-miR-215, hsa-miR-934, hsa-miR-3920, and hsa-miR-216b. Survival of UCEC patients in the high-risk group was worse than that in the low-risk group (
). The receiver operating characteristic (ROC) curve showed that the model had good predictive performance, and the area under the curve was 0.800, 0.690, and 0.705 for 1-, 3-, and 5-year survival predictions, respectively. There were differences in the degree of immune cell infiltration and immune activity between the low-risk and high-risk groups. The expression levels of the identified differentially expressed genes correlated with the susceptibility to multiple anticancer drugs. Conclusions. The survival prediction model constructed based on 9 m7G-related miRNAs had good predictive performance.
Collapse
|