1
|
Barbetti F, Deeb A, Suzuki S. Neonatal diabetes mellitus around the world: Update 2024. J Diabetes Investig 2024; 15:1711-1724. [PMID: 39344692 PMCID: PMC11615689 DOI: 10.1111/jdi.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Neonatal diabetes mellitus (NDM), defined as diabetes with an onset during the first 6 months of life, is a rare form of monogenic diabetes. The initial publications on this condition began appearing in the second half of the 1990s and quite surprisingly, the search for new NDM genes is still ongoing with great vigor. Between 2018 and early 2024, six brand new NDM-genes have been discovered (CNOT1, FICD, ONECUT1, PDIA6, YIPF5, ZNF808) and three genes known to cause different diseases were identified as NDM-genes (EIF2B1, NARS2, KCNMA1). In addition, NDM cases carrying mutations in three other genes known to give rise to diabetes during childhood have been also identified (AGPAT2, BSCL2, PIK3R1). As a consequence, the list of NDM genes now exceeds 40. This genetic heterogeneity translates into many different mechanism(s) of disease that are being investigated with state-of-the-art methodologies, such as induced pluripotent stem cells (iPSC) and human embryonic stem cells (hESC) manipulated with the CRISPR technique of genome editing. This diversity in genetic causes and the pathophysiology of diabetes dictate the need for a variety of therapeutic approaches. The aim of this paper is to provide an overview on recent achievements in all aspects of this area of research.
Collapse
Affiliation(s)
- Fabrizio Barbetti
- Monogenic Diabetes Clinic, Endocrinology and Diabetes UnitBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Asma Deeb
- Pediatric Endocrine Division, Sheikh Shakhbout Medical City and College of Medicine and Health ScienceKhalifa UniversityAbu DhabiUAE
| | - Shigeru Suzuki
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| |
Collapse
|
2
|
Tornero-Hernández M, Cayuela-Hernández A, Chover-Martínez C, León-Cariñena S, Toledo JD, Martín-Zamora S, Solaz-García Á. Novel pathogenic variant in GATA6 causes neonatal diabetes mellitus due to pancreas malformation and congenital heart disease. J Paediatr Child Health 2024. [PMID: 39373086 DOI: 10.1111/jpc.16683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/19/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Affiliation(s)
| | | | | | - Sara León-Cariñena
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Juan Diego Toledo
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
- Neonatal Research Unit, Health Research Institute La Fe, Valencia, Spain
| | - Sergio Martín-Zamora
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | |
Collapse
|
3
|
Shen LH, Cui Y, Fu DX, Yang W, Wu SN, Wang HZ, Yang HH, Chen YX, Wei HY. Transient diabetes mellitus with ABCC8 variant successfully treated with sulfonylurea: Two case reports and review of literature. World J Diabetes 2024; 15:1811-1819. [PMID: 39192869 PMCID: PMC11346097 DOI: 10.4239/wjd.v15.i8.1811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Transient neonatal diabetes mellitus (TNDM) is a rare form of diabetes mellitus that usually presents within the first 6 mo of life. Patients often enter remission within several months, although relapse can occur later in life. Mutations in the ABCC8 gene, which encodes the sulfonylurea receptor 1 of the ATP-sensitive potassium channel in pancreatic beta cells, are associated with TNDM and permanent neonatal diabetes. This study describes a novel de novo c.3880C>T heterozygous ABCC8 variant that causes TNDM and can be treated with sulf-onylurea therapy. CASE SUMMARY We retrospectively analyzed 2 Chinese patients with TNDM who were diagnosed, treated, or referred for follow-up between September 2017 and September 2023. The patients were tested for mutations using targeted next-generation sequencing. Patients with neonatal diabetes mellitus caused by a c.3880C>T heterozygous missense variant in the ABCC8 gene have not been reported before. Both children had an onset of post-infectious diabetic ketoacidosis, which is worth noting. At a follow-up visit after discontinuing insulin injection, oral glyburide was found to be effective with no adverse reactions. CONCLUSION Early genetic testing of neonatal diabetes mellitus aids in accurate diagnosis and treatment and helps avoid daily insulin injections that may cause pain.
Collapse
Affiliation(s)
- Ling-Hua Shen
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Yan Cui
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Dong-Xia Fu
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Wei Yang
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Sheng-Nan Wu
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Hui-Zhen Wang
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Hai-Hua Yang
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Yong-Xing Chen
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Hai-Yan Wei
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| |
Collapse
|
4
|
Aldrian D, Bochdansky C, Kavallar AM, Mayerhofer C, Deeb A, Habeb A, Romera Rabasa A, Khadilkar A, Uçar A, Knoppke B, Zafeiriou D, Lang-Muritano M, Miqdady M, Judmaier S, McLin V, Furdela V, Müller T, Vogel GF. Natural history of Wolcott-Rallison syndrome: A systematic review and follow-up study. Liver Int 2024; 44:811-822. [PMID: 38230874 DOI: 10.1111/liv.15834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND AND AIMS To systematically review the literature for reports on Wolcott-Rallison syndrome, focusing on the spectrum and natural history, genotype-phenotype correlations, patient and native liver survival, and long-term outcomes. METHODS PubMed, Livio, Google Scholar, Scopus and Web of Science databases were searched. Data on genotype, phenotype, therapy, cause of death and follow-up were extracted. Survival and correlation analyses were performed. RESULTS Sixty-two studies with 159 patients met the inclusion criteria and additional 30 WRS individuals were collected by personal contact. The median age of presentation was 2.5 months (IQR 2) and of death was 36 months (IQR 50.75). The most frequent clinical feature was neonatal diabetes in all patients, followed by liver impairment in 73%, impaired growth in 72%, skeletal abnormalities in 59.8%, the nervous system in 37.6%, the kidney in 35.4%, insufficient haematopoiesis in 34.4%, hypothyroidism in 14.8% and exocrine pancreas insufficiency in 10.6%. Episodes of acute liver failure were frequently reported. Liver transplantation was performed in six, combined liver-pancreas in one and combined liver-pancreas-kidney transplantation in two individuals. Patient survival was significantly better in the transplant cohort (p = .0057). One-, five- and ten-year patient survival rates were 89.4%, 65.5% and 53.1%, respectively. Liver failure was reported as the leading cause of death in 17.9% of cases. Overall survival was better in individuals with missense mutations (p = .013). CONCLUSION Wolcott-Rallison syndrome has variable clinical courses. Overall survival is better in individuals with missense mutations. Liver- or multi-organ transplantation is a feasible treatment option to improve survival.
Collapse
Affiliation(s)
- Denise Aldrian
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Clemens Bochdansky
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna M Kavallar
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Mayerhofer
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Asma Deeb
- Paediatric Endocrinology Division, Sheikh Shakhbout Medical City, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Abdelhadi Habeb
- Department of Pediatrics, Prince Mohamed bin Abdulaziz Hospital, National Guard Health Affairs, Madinah, Saudi Arabia
| | - Andrea Romera Rabasa
- Department of Pediatric Anesthesia, Gregorio Marañón University Hospital, Madrid, Spain
| | - Anuradha Khadilkar
- Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, India
| | - Ahmet Uçar
- Department of Pediatric Endocrinology & Diabetes, University of Health Sciences, Şişli Hamidiye Etfal Health Practices & Research Centre, Istanbul, Turkey
| | - Birgit Knoppke
- University Children's Hospital Regensburg (KUNO), University Medical Center Regensburg, Regensburg, Germany
| | - Dimitrios Zafeiriou
- 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
| | - Mariarosaria Lang-Muritano
- Department of Endocrinology and Diabetology and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Mohamad Miqdady
- Division of Pediatric Gastroenterology, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Sylvia Judmaier
- Department of Paediatrics, LKH Hochsteiermark/Standort Leoben, Leoben, Austria
| | - Valerié McLin
- Department of Pediatrics, Gynecology and Obstetrics, Swiss Pediatric Liver Center, University of Geneva, Geneva, Switzerland
| | - Viktoriya Furdela
- Department of Pediatrics, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg F Vogel
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Hassan SS, Musa SA, De Franco E, Donis Frew R, Babiker OO, Mohamadsalih GF, Ibrahim AA, Abu Samra S, Abdullah MA. Incidence, Phenotypes, and Genotypes of Neonatal Diabetes: A 16-Year Experience. The Rare Genetic Etiologies of Neonatal Diabetes Are Common in Sudan. Pediatr Diabetes 2024; 2024:2032425. [PMID: 40302952 PMCID: PMC12016844 DOI: 10.1155/2024/2032425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/14/2024] [Accepted: 02/03/2024] [Indexed: 05/02/2025] Open
Abstract
Neonatal diabetes (ND) is a rare subtype of diabetes occurring in the first 6 months of life. High incidence has been reported among populations with high rates of consanguineous marriage. However, there is paucity of reported data from sub-Saharan African countries. We report the incidence, genotype, and phenotype of ND in a large cohort from Sudan and compare these findings to regional and international data. All infants with onset of diabetes in the first 6 months of life, attending one of the only two tertiary pediatric diabetes centers in Sudan, Gaafar Ibn Auf Pediatric Tertiary Hospital and Sudan Childhood Diabetes Center, during the period of January 2006 to December 2022 were included. Medical records were reviewed for demographic and clinical information. Genetic testing was performed for 48 patients by the Exeter Genomics laboratory in the UK and for one patient by the University of Cambridge, Metabolic Research Laboratories, UK. The estimated incidence was 4.8 per 100,000 live births. Forty-nine ND patients from 45 unrelated families were identified, and a genetic diagnosis was confirmed in 37 patients (75.5%) from 33 unrelated families. Consanguinity was reported in 34 families (75.6%). The commonest genetic cause for permanent neonatal diabetes was EIF2AK3 recessive variants causing Wolcott-Rallison syndrome (18.92%). Pathogenic variants in two recently identified genes, ZNF808 and NARS2, were found in three patients each (8.11%). Activating variants in KCNJ11 and ABCC8 were identified in four (10.81%) and two (5.41%) patients, respectively. Apart from hyperglycemia, the commonest clinical presentations included dehydration, failure to thrive, and diabetic ketoacidosis. ND in Sudan has a different pattern of etiologies compared to Western and Asian populations yet similar to some Arab countries with EIF2AK3 mutations being the commonest cause. Pathogenic variants in recently identified genes reflect the impact of genome sequencing on increasing the rate of genetic diagnosis.
Collapse
Affiliation(s)
- Samar S. Hassan
- Department of Pediatric Endocrine and Diabetes, Gaafar Ibn Auf Pediatric Tertiary Hospital, Khartoum, Sudan
- Sudan Childhood Diabetes Center, Khartoum, Sudan
| | - Salwa A. Musa
- Department of Pediatric Endocrine and Diabetes, Gaafar Ibn Auf Pediatric Tertiary Hospital, Khartoum, Sudan
- Sudan Childhood Diabetes Center, Khartoum, Sudan
- Department of Pediatric and Child Health, Faculty of Medicine, AL-Neelain University, Khartoum, Sudan
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Russel Donis Frew
- Institute of Biomedical and Clinical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Omer O. Babiker
- Sudan Childhood Diabetes Center, Khartoum, Sudan
- Department of Pediatrics, Faculty of Medicine, Omdurman Islamic University, Khartoum, Sudan
| | | | - Areej A. Ibrahim
- Division of Pediatric Endocrine, Department of Pediatrics, Prince Mohammed Bin Abdulaziz Hospital, Madinah, Saudi Arabia
| | | | - Mohamed A. Abdullah
- Department of Pediatric Endocrine and Diabetes, Gaafar Ibn Auf Pediatric Tertiary Hospital, Khartoum, Sudan
- Sudan Childhood Diabetes Center, Khartoum, Sudan
- Department of Pediatrics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
6
|
de Souza RB, Cabello PH, Rosado EL, Junior MC, de Medeiros Abreu G. What Do We Know about Neonatal Diabetes caused by PDX1 Mutations? Curr Diabetes Rev 2024; 21:e290124226471. [PMID: 38299270 DOI: 10.2174/0115733998265866231204070606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Neonatal diabetes mellitus (NDM) is characterized by severe hyperglycemia, usually diagnosed in the first few months of an individual's life. It is a genetic disease and one of the main forms of monogenic diabetes. Changes in different genes have already been associated with NDM, including changes in the gene PDX1. METHODS In this review, we intend to summarize all neonatal diabetes cases caused by PDX1 mutations reported in the literature. For this purpose, we searched keywords in the literature from PubMed and articles cited by the HGMD database. The search retrieved 84 articles, of which 41 had their full text accessed. After applying the study exclusion criteria, nine articles were included. RESULTS Of those articles, we detected thirteen cases of NDM associated with changes in PDX1; the majority in homozygous or compound heterozygous patients. Until now, variants in the PDX1 gene have been a rare cause of NDM; however, few studies have included the screening of this gene in the investigation of neonatal diabetes. CONCLUSION In this review, we reinforce the importance of the PDX1 gene inclusion in genetic NGS panels for molecular diagnosis of NDM, and systematic morphological and functional exams of the pancreas when NDM is present.
Collapse
Affiliation(s)
- Ritiele Bastos de Souza
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Pedro Hernán Cabello
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Genetics, School of Health Science, University of Grande Rio, Rio de Janeiro, Brazil
| | - Eliane Lopes Rosado
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mário Campos Junior
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gabriella de Medeiros Abreu
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|