1
|
Mallis RJ, Lee JJ, den Berg AV, Brazin KN, Viennet T, Zmuda J, Cross M, Radeva D, Rodriguez‐Mias R, Villén J, Gelev V, Reinherz EL, Arthanari H. Efficient and economic protein labeling for NMR in mammalian expression systems: Application to a preT-cell and T-cell receptor protein. Protein Sci 2024; 33:e4950. [PMID: 38511503 PMCID: PMC10955624 DOI: 10.1002/pro.4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Protein nuclear magnetic resonance (NMR) spectroscopy relies on the ability to isotopically label polypeptides, which is achieved through heterologous expression in various host organisms. Most commonly, Escherichia coli is employed by leveraging isotopically substituted ammonium and glucose to uniformly label proteins with 15N and 13C, respectively. Moreover, E. coli can grow and express proteins in uniformly deuterium-substituted water (D2O), a strategy useful for experiments targeting high molecular weight proteins. Unfortunately, many proteins, particularly those requiring specific posttranslational modifications like disulfide bonding or glycosylation for proper folding and/or function, cannot be readily expressed in their functional forms using E. coli-based expression systems. One such class of proteins includes T-cell receptors and their related preT-cell receptors. In this study, we present an expression system for isotopic labeling of proteins using a nonadherent human embryonic kidney cell line, Expi293F, and a specially designed media. We demonstrate the application of this platform to the β subunit common to both receptors. In addition, we show that this expression system and media can be used to specifically label amino acids Phe, Ile, Val, and Leu in this system, utilizing an amino acid-specific labeling protocol that allows targeted incorporation at high efficiency without significant isotopic scrambling. We demonstrate that this system can also be used to express proteins with fluorinated amino acids. We were routinely able to obtain an NMR sample with a concentration of 200 μM from 30 mL of culture media, utilizing less than 20 mg of the labeled amino acids.
Collapse
Affiliation(s)
- Robert J. Mallis
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of DermatologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Jonathan J. Lee
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | | | - Kristine N. Brazin
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Thibault Viennet
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Denitsa Radeva
- Faculty of Chemistry and PharmacySofia UniversitySofiaBulgaria
| | | | - Judit Villén
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Vladimir Gelev
- Faculty of Chemistry and PharmacySofia UniversitySofiaBulgaria
| | - Ellis L. Reinherz
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Haribabu Arthanari
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
Mizsei R, Li X, Chen WN, Szabo M, Wang JH, Wagner G, Reinherz EL, Mallis RJ. A general chemical crosslinking strategy for structural analyses of weakly interacting proteins applied to preTCR-pMHC complexes. J Biol Chem 2021; 296:100255. [PMID: 33837736 PMCID: PMC7948749 DOI: 10.1016/j.jbc.2021.100255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/04/2022] Open
Abstract
T lymphocytes discriminate between healthy and infected or cancerous cells via T-cell receptor-mediated recognition of peptides bound and presented by cell-surface-expressed major histocompatibility complex molecules (MHCs). Pre-T-cell receptors (preTCRs) on thymocytes foster development of αβT lymphocytes through their β chain interaction with MHC displaying self-peptides on thymic epithelia. The specific binding of a preTCR with a peptide-MHC complex (pMHC) has been identified previously as forming a weak affinity complex with a distinct interface from that of mature αβTCR. However, a lack of appropriate tools has limited prior efforts to investigate this unique interface. Here we designed a small-scale linkage screening protocol using bismaleimide linkers for determining residue-specific distance constraints between transiently interacting protein pairs in solution. Employing linkage distance restraint-guided molecular modeling, we report the oriented solution docking geometry of a preTCRβ-pMHC interaction. The linkage model of preTCRβ-pMHC complex was independently verified with paramagnetic pseudocontact chemical shift (PCS) NMR of the unlinked protein mixtures. Using linkage screens, we show that the preTCR binds with differing affinities to peptides presented by MHC in solution. Moreover, the C-terminal peptide segment is a key determinant in preTCR-pMHC recognition. We also describe the process for future large-scale production and purification of the linked constructs for NMR, X-ray crystallography, and single-molecule electron microscopy studies.
Collapse
MESH Headings
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/ultrastructure
- Humans
- Major Histocompatibility Complex/genetics
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/ultrastructure
- Nuclear Magnetic Resonance, Biomolecular
- Peptides/chemistry
- Peptides/genetics
- Protein Binding/genetics
- Protein Interaction Domains and Motifs/genetics
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/ultrastructure
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/ultrastructure
- T-Lymphocytes/chemistry
- T-Lymphocytes/immunology
- T-Lymphocytes/ultrastructure
- Thymocytes/chemistry
- Thymocytes/ultrastructure
Collapse
Affiliation(s)
- Réka Mizsei
- Laboratory of Immunobiology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Xiaolong Li
- Laboratory of Immunobiology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Wan-Na Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Monika Szabo
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jia-Huai Wang
- Laboratory of Immunobiology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| | - Robert J Mallis
- Laboratory of Immunobiology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Mallis RJ, Brazin KN, Duke-Cohan JS, Hwang W, Wang JH, Wagner G, Arthanari H, Lang MJ, Reinherz EL. NMR: an essential structural tool for integrative studies of T cell development, pMHC ligand recognition and TCR mechanobiology. JOURNAL OF BIOMOLECULAR NMR 2019; 73:319-332. [PMID: 30815789 PMCID: PMC6693947 DOI: 10.1007/s10858-019-00234-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/06/2019] [Indexed: 05/05/2023]
Abstract
Early studies of T cell structural biology using X-ray crystallography, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) focused on a picture of the αβT cell receptor (αβTCR) component domains and their cognate ligands (peptides bound to MHC molecules, i.e. pMHCs) as static interaction partners. Moving forward requires integrating this corpus of data with dynamic technologies such as NMR, molecular dynamics (MD) simulations and real-time single molecule (SM) studies exemplified by optical tweezers (OT). NMR bridges relevant timescales and provides the potential for an all-atom dynamic description of αβTCR components prior to and during interactions with binding partners. SM techniques have opened up vistas in understanding the non-equilibrium nature of T cell signaling through the introduction of force-mediated binding measurements into the paradigm for T cell function. In this regard, bioforces consequent to T-lineage cell motility are now perceived as placing piconewton (pN)-level loads on single receptor-pMHC bonds to impact structural change and αβT-lineage biology, including peptide discrimination, cellular activation, and developmental progression. We discuss herein essential NMR technologies in illuminating the role of ligand binding in the preT cell receptor (preTCR), the αβTCR developmental precursor, and convergence of NMR, SM and MD data in advancing our comprehension of T cell development. More broadly we review the central hypothesis that the αβTCR is a mechanosensor, fostered by breakthrough NMR-based structural insights. Collectively, elucidating dynamic aspects through the integrative use of NMR, SM, and MD shall advance fundamental appreciation of the mechanism of T cell signaling as well as inform translational efforts in αβTCR and chimeric T cell (CAR-T) immunotherapies and T cell vaccinology.
Collapse
Affiliation(s)
- Robert J Mallis
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Kristine N Brazin
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Jonathan S Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, 77843, USA
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, 02455, Republic of Korea
| | - Jia-Huai Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA.
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Mallis RJ, Arthanari H, Lang MJ, Reinherz EL, Wagner G. NMR-directed design of pre-TCRβ and pMHC molecules implies a distinct geometry for pre-TCR relative to αβTCR recognition of pMHC. J Biol Chem 2017; 293:754-766. [PMID: 29101227 DOI: 10.1074/jbc.m117.813493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/20/2017] [Indexed: 11/06/2022] Open
Abstract
The pre-T cell receptor (pre-TCR) guides early thymocytes through maturation processes within the thymus via interaction with self-ligands displayed on thymic epithelial cells. The pre-TCR is a disulfide-linked heterodimer composed of an invariant pre-TCR α (pTα) subunit and a variable β subunit, the latter of which is incorporated into the mature TCR in subsequent developmental progression. This interaction of pre-TCR with peptide-major histocompatibility complex (pMHC) molecules has recently been shown to drive robust pre-TCR signaling and thymocyte maturation. Although the native sequences of β are properly folded and suitable for NMR studies in isolation, a tendency to self-associate rendered binding studies with physiological ligands difficult to interpret. Consequently, to structurally define this critical interaction, we have re-engineered the extracellular regions of β, designated as β-c1, for prokaryotic production to be used in NMR spectroscopy. Given the large size of the full extracellular domain of class I MHC molecules such as H-Kb, we produced a truncated form termed Kb-t harboring properties favorable for NMR measurements. This system has enabled robust measurement of a pre-TCR-pMHC interaction directly analogous to that of TCRαβ-pMHC. Binding surface analysis identified a contact surface comparable in size to that of the TCRαβ-pMHC but potentially with a rather distinct binding orientation. A tilting of the pre-TCRβ when bound to the pMHC ligand recognition surface versus the upright orientation of TCRαβ would alter the direction of force application between pre-TCR and TCR mechanosensors, impacting signal initiation.
Collapse
Affiliation(s)
- Robert J Mallis
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Haribabu Arthanari
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37235, and
| | - Ellis L Reinherz
- Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Gerhard Wagner
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|