1
|
Chen J, Zou X, Zhu W, Duan Y, Merzendorfer H, Zhao Z, Yang Q. Fatty acid binding protein is required for chitin biosynthesis in the wing of Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 149:103845. [PMID: 36165873 DOI: 10.1016/j.ibmb.2022.103845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Chitin, the major structural polysaccharide in arthropods such as insects and mites, is a linear polymer of N-acetylglucosamine units. The growth and development of insects are intimately coupled with chitin biosynthesis. The membrane-bound β-glycosyltransferase chitin synthase is known to catalyze the key polymerization step of N-acetylglucosamine. However, the additional proteins that might assist chitin synthase during chitin biosynthesis are not well understood. Recently, fatty acid binding protein (Fabp) has been suggested as a candidate that interacts with the chitin synthase Krotzkopf verkehrt (Kkv) in Drosophila melanogaster. Here, using split-ubiquitin membrane yeast two-hybrid and pull-down assays, we have demonstrated that the Fabp-B splice variant physically interacts with Kkv in vitro. The global knockdown of Fabp in D. melanogaster using RNA interference (RNAi) induced lethality at the larval stage. Moreover, in tissue-specific RNAi experiments, silenced Fabp expression in the epidermis and tracheal system caused a lethal larval phenotype. Fabp knockdown in the wings resulted in an abnormal wing development and uneven cuticular surface. In addition to reducing the chitin content in the first longitudinal vein of wings, Fabp silencing also caused the loss of procuticle laminate structures. This study revealed that Fabp plays an important role in chitin synthesis and contributes to a comprehensive understanding of the complex insect chitin biosynthesis.
Collapse
Affiliation(s)
- Jiqiang Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China; Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xu Zou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Weixing Zhu
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, China
| | - Yanwei Duan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7 Pengfei Road, Shenzhen, 518120, China
| | - Hans Merzendorfer
- Institute of Biology, University of Siegen, Adolf-Reichwein-Strasse 2, Siegen, 57068, Germany
| | - Zhangwu Zhao
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China; School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7 Pengfei Road, Shenzhen, 518120, China.
| |
Collapse
|
2
|
Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers. Prog Lipid Res 2021; 83:101116. [PMID: 34293403 DOI: 10.1016/j.plipres.2021.101116] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
The dysregulation of fat metabolism is involved in various disorders, including neurodegenerative, cardiovascular, and cancers. The uptake of long-chain fatty acids (LCFAs) with 14 or more carbons plays a pivotal role in cellular metabolic homeostasis. Therefore, the uptake and metabolism of LCFAs must constantly be in tune with the cellular, metabolic, and structural requirements of cells. Many metabolic diseases are thought to be driven by the abnormal flow of fatty acids either from the dietary origin and/or released from adipose stores. Cellular uptake and intracellular trafficking of fatty acids are facilitated ubiquitously with unique combinations of fatty acid transport proteins and cytoplasmic fatty acid-binding proteins in every tissue. Extensive data are emerging on the defective transporters and metabolism of LCFAs and their clinical implications. Uptake and metabolism of LCFAs are crucial for the brain's functional development and cardiovascular health and maintenance. In addition, data suggest fatty acid metabolic transporter can normalize activated inflammatory response by reprogramming lipid metabolism in cancers. Here we review the current understanding of how LCFAs and their proteins contribute to the pathophysiology of three crucial diseases and the mechanisms involved in the processes.
Collapse
|
3
|
Kan E, Tomita H, Katsuyama Y, Maruyama JI, Koyama Y, Ohnishi Y. Discovery of the 2,4'-Dihydroxy-3'-methoxypropiophenone Biosynthesis Genes in Aspergillus oryzae. Chembiochem 2020; 22:203-211. [PMID: 32885554 DOI: 10.1002/cbic.202000505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/02/2020] [Indexed: 11/11/2022]
Abstract
The filamentous fungus Aspergillus oryzae has 27 putative iterative type I polyketide synthase (PKS) gene clusters, but the secondary metabolites produced by them are mostly unknown. Here, we focused on eight clusters that were reported to be expressed at relatively high levels in a transcriptome analysis. By comparing metabolites between an octuple-deletion mutant of these eight PKS gene clusters and its parent strain, we found that A. oryzae produced 2,4'-dihydroxy-3'-methoxypropiophenone (1) and its precursor, 4'-hydroxy-3'-methoxypropiophenone (3) in a specific liquid medium. Furthermore, an iterative type I PKS (PpsB) encoded by AO090102000166 and an acetyl-CoA ligase (PpsA) encoded downstream from ppsB were shown to be essential for their biosynthesis. PpsC, encoded upstream from ppsB, was shown to have 3-binding activity (Kd =26.0±6.2 μM) and is suggested to be involved in the conversion of 3 to 1. This study deepens our understanding of cryptic secondary metabolism in A. oryzae.
Collapse
Affiliation(s)
- Eiichiro Kan
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Noda Institute for Scientific Research, 338, Noda, Noda City, Chiba, 278-0037, Japan
| | - Hiroya Tomita
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jun-Ichi Maruyama
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuji Koyama
- Noda Institute for Scientific Research, 338, Noda, Noda City, Chiba, 278-0037, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|