1
|
Insights into the structure and function of Est3 from the Hansenula polymorpha telomerase. Sci Rep 2020; 10:11109. [PMID: 32632130 PMCID: PMC7338525 DOI: 10.1038/s41598-020-68107-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Telomerase is a ribonucleoprotein enzyme, which maintains genome integrity in eukaryotes and ensures continuous cellular proliferation. Telomerase holoenzyme from the thermotolerant yeast Hansenula polymorpha, in addition to the catalytic subunit (TERT) and telomerase RNA (TER), contains accessory proteins Est1 and Est3, which are essential for in vivo telomerase function. Here we report the high-resolution structure of Est3 from Hansenula polymorpha (HpEst3) in solution, as well as the characterization of its functional relationships with other components of telomerase. The overall structure of HpEst3 is similar to that of Est3 from Saccharomyces cerevisiae and human TPP1. We have shown that telomerase activity in H. polymorpha relies on both Est3 and Est1 proteins in a functionally symmetrical manner. The absence of either Est3 or Est1 prevents formation of a stable ribonucleoprotein complex, weakens binding of a second protein to TER, and decreases the amount of cellular TERT, presumably due to the destabilization of telomerase RNP. NMR probing has shown no direct in vitro interactions of free Est3 either with the N-terminal domain of TERT or with DNA or RNA fragments mimicking the probable telomerase environment. Our findings corroborate the idea that telomerase possesses the evolutionarily variable functionality within the conservative structural context.
Collapse
|
2
|
Wang Y, Sušac L, Feigon J. Structural Biology of Telomerase. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032383. [PMID: 31451513 DOI: 10.1101/cshperspect.a032383] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Telomerase is a DNA polymerase that extends the 3' ends of chromosomes by processively synthesizing multiple telomeric repeats. It is a unique ribonucleoprotein (RNP) containing a specialized telomerase reverse transcriptase (TERT) and telomerase RNA (TER) with its own template and other elements required with TERT for activity (catalytic core), as well as species-specific TER-binding proteins important for biogenesis and assembly (core RNP); other proteins bind telomerase transiently or constitutively to allow association of telomerase and other proteins with telomere ends for regulation of DNA synthesis. Here we describe how nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography of TER and protein domains helped define the structure and function of the core RNP, laying the groundwork for interpreting negative-stain and cryo electron microscopy (cryo-EM) density maps of Tetrahymena thermophila and human telomerase holoenzymes. As the resolution has improved from ∼30 Å to ∼5 Å, these studies have provided increasingly detailed information on telomerase architecture and mechanism.
Collapse
Affiliation(s)
- Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| | - Lukas Sušac
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| |
Collapse
|
3
|
Petrova OA, Mantsyzov AB, Rodina EV, Efimov SV, Hackenberg C, Hakanpää J, Klochkov VV, Lebedev AA, Chugunova AA, Malyavko AN, Zatsepin TS, Mishin AV, Zvereva MI, Lamzin VS, Dontsova OA, Polshakov VI. Structure and function of the N-terminal domain of the yeast telomerase reverse transcriptase. Nucleic Acids Res 2019; 46:1525-1540. [PMID: 29294091 PMCID: PMC5814841 DOI: 10.1093/nar/gkx1275] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022] Open
Abstract
The elongation of single-stranded DNA repeats at the 3′-ends of chromosomes by telomerase is a key process in maintaining genome integrity in eukaryotes. Abnormal activation of telomerase leads to uncontrolled cell division, whereas its down-regulation is attributed to ageing and several pathologies related to early cell death. Telomerase function is based on the dynamic interactions of its catalytic subunit (TERT) with nucleic acids—telomerase RNA, telomeric DNA and the DNA/RNA heteroduplex. Here, we present the crystallographic and NMR structures of the N-terminal (TEN) domain of TERT from the thermotolerant yeast Hansenula polymorpha and demonstrate the structural conservation of the core motif in evolutionarily divergent organisms. We identify the TEN residues that are involved in interactions with the telomerase RNA and in the recognition of the ‘fork’ at the distal end of the DNA product/RNA template heteroduplex. We propose that the TEN domain assists telomerase biological function and is involved in restricting the size of the heteroduplex during telomere repeat synthesis.
Collapse
Affiliation(s)
- Olga A Petrova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexey B Mantsyzov
- Centre for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elena V Rodina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey V Efimov
- NMR Laboratory, Institute of Physics, Kazan Federal University, 18 Kremlevskaya, Kazan 420008, Russia
| | - Claudia Hackenberg
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Johanna Hakanpää
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Vladimir V Klochkov
- NMR Laboratory, Institute of Physics, Kazan Federal University, 18 Kremlevskaya, Kazan 420008, Russia
| | - Andrej A Lebedev
- Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, UK
| | - Anastasia A Chugunova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alexander N Malyavko
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Timofei S Zatsepin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alexey V Mishin
- Laboratory for Structural Biology of GPCRs, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Maria I Zvereva
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Victor S Lamzin
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Olga A Dontsova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.,Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Vladimir I Polshakov
- Centre for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
4
|
Shastry S, Steinberg-Neifach O, Lue N, Stone MD. Direct observation of nucleic acid binding dynamics by the telomerase essential N-terminal domain. Nucleic Acids Res 2018; 46:3088-3102. [PMID: 29474579 PMCID: PMC5887506 DOI: 10.1093/nar/gky117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/31/2018] [Accepted: 02/17/2018] [Indexed: 11/12/2022] Open
Abstract
Telomerase is a specialized enzyme that maintains telomere length by adding DNA repeats to chromosome ends. The catalytic protein subunit of telomerase utilizes the integral telomerase RNA to direct telomere DNA synthesis. The telomerase essential N-terminal (TEN) domain is required for enzyme function; however, the precise mechanism of the TEN domain during catalysis is not known. We report a single-molecule study of dynamic TEN-induced conformational changes in its nucleic acid substrates. The TEN domain from the yeast Candida parapsilosis (Cp) exhibits a strong binding preference for double-stranded nucleic acids, with particularly high affinity for an RNA-DNA hybrid mimicking the template-product complex. Surprisingly, the telomere DNA repeat sequence from C. parapsilosis forms a DNA hairpin that also binds CpTEN with high affinity. Mutations to several residues in a putative nucleic acid-binding patch of CpTEN significantly reduced its affinity to the RNA-DNA hybrid and telomere DNA hairpin. Substitution of comparable residues in the related Candida albicans TEN domain caused telomere maintenance defects in vivo and decreased primer extension activity in vitro. Collectively, our results support a working model in which dynamic interactions with telomere DNA and the template-product hybrid underlie the functional requirement for the TEN domain during the telomerase catalytic cycle.
Collapse
Affiliation(s)
- Shankar Shastry
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Olga Steinberg-Neifach
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Neal Lue
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
5
|
Wang Y, Feigon J. Structural biology of telomerase and its interaction at telomeres. Curr Opin Struct Biol 2017; 47:77-87. [PMID: 28732250 PMCID: PMC5564310 DOI: 10.1016/j.sbi.2017.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
Telomerase is an RNP that synthesizes the 3' ends of linear chromosomes and is an important regulator of telomere length. It contains a single long non-coding telomerase RNA (TER), telomerase reverse transcriptase (TERT), and other proteins that vary among organisms. Recent progress in structural biology of telomerase includes reports of the first cryo-electron microscopy structure of telomerase, from Tetrahymena, new crystal structures of TERT domains, telomerase RNA structures and models, and identification in Tetrahymena telomerase holoenzyme of human homologues of telomere-associated proteins that have provided a more unified view of telomerase interaction at telomeres as well as insights into the role of telomerase RNA in activity and assembly.
Collapse
Affiliation(s)
- Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|