1
|
Callon M, Luder D, Malär AA, Wiegand T, Římal V, Lecoq L, Böckmann A, Samoson A, Meier BH. High and fast: NMR protein-proton side-chain assignments at 160 kHz and 1.2 GHz. Chem Sci 2023; 14:10824-10834. [PMID: 37829013 PMCID: PMC10566471 DOI: 10.1039/d3sc03539e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
The NMR spectra of side-chain protons in proteins provide important information, not only about their structure and dynamics, but also about the mechanisms that regulate interactions between macromolecules. However, in the solid-state, these resonances are particularly difficult to resolve, even in relatively small proteins. We show that magic-angle-spinning (MAS) frequencies of 160 kHz, combined with a high magnetic field of 1200 MHz proton Larmor frequency, significantly improve their spectral resolution. We investigate in detail the gain for MAS frequencies between 110 and 160 kHz MAS for a model sample as well as for the hepatitis B viral capsid assembled from 120 core-protein (Cp) dimers. For both systems, we found a significantly improved spectral resolution of the side-chain region in the 1H-13C 2D spectra. The combination of 160 kHz MAS frequency with a magnetic field of 1200 MHz, allowed us to assign 61% of the aliphatic protons of Cp. The side-chain proton assignment opens up new possibilities for structural studies and further characterization of protein-protein or protein-nucleic acid interactions.
Collapse
Affiliation(s)
| | | | | | | | - Václav Římal
- Physical Chemistry, ETH Zürich 8093 Zürich Switzerland
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086, CNRS, Université de Lyon, Labex Ecofect 7 passage du Vercors 69367 Lyon France
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086, CNRS, Université de Lyon, Labex Ecofect 7 passage du Vercors 69367 Lyon France
| | - Ago Samoson
- Institute of Cybernetics, Spin Design Laboratory, Tallinn University of Technology Tallinn Estonia
| | - Beat H Meier
- Physical Chemistry, ETH Zürich 8093 Zürich Switzerland
| |
Collapse
|
2
|
Damle VG, Wu K, Arouri DJ, Schirhagl R. Detecting free radicals post viral infections. Free Radic Biol Med 2022; 191:8-23. [PMID: 36002131 DOI: 10.1016/j.freeradbiomed.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Free radical generation plays a key role in viral infections. While free radicals have an antimicrobial effect on bacteria or fungi, their interplay with viruses is complicated and varies greatly for different types of viruses as well as different radical species. In some cases, radical generation contributes to the defense against the viruses and thus reduces the viral load. In other cases, radical generation induces mutations or damages the host tissue and can increase the viral load. This has led to antioxidants being used to treat viral infections. Here we discuss the roles that radicals play in virus pathology. Furthermore, we critically review methods that facilitate the detection of free radicals in vivo or in vitro in viral infections.
Collapse
Affiliation(s)
- V G Damle
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - K Wu
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - D J Arouri
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - R Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
3
|
Callon M, Malär AA, Lecoq L, Dujardin M, Fogeron M, Wang S, Schledorn M, Bauer T, Nassal M, Böckmann A, Meier BH. Fast Magic-Angle-Spinning NMR Reveals the Evasive Hepatitis B Virus Capsid C-Terminal Domain. Angew Chem Int Ed Engl 2022; 61:e202201083. [PMID: 35653505 PMCID: PMC9400876 DOI: 10.1002/anie.202201083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/08/2022]
Abstract
Experimentally determined protein structures often feature missing domains. One example is the C-terminal domain (CTD) of the hepatitis B virus capsid protein, a functionally central part of this assembly, crucial in regulating nucleic-acid interactions, cellular trafficking, nuclear import, particle assembly and maturation. However, its structure remained elusive to all current techniques, including NMR. Here we show that the recently developed proton-detected fast magic-angle-spinning solid-state NMR at >100 kHz MAS allows one to detect this domain and unveil its structural and dynamic behavior. We describe the experimental framework used and compare the domain's behavior in different capsid states. The developed approaches extend solid-state NMR observations to residues characterized by large-amplitude motion on the microsecond timescale, and shall allow one to shed light on other flexible protein domains still lacking their structural and dynamic characterization.
Collapse
Affiliation(s)
| | | | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect7 passage du Vercors69367LyonFrance
| | - Marie Dujardin
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect7 passage du Vercors69367LyonFrance
| | - Marie‐Laure Fogeron
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect7 passage du Vercors69367LyonFrance
| | - Shishan Wang
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect7 passage du Vercors69367LyonFrance
| | | | - Thomas Bauer
- Physical Chemistry, ETH Zürich8093ZürichSwitzerland
| | - Michael Nassal
- University Hospital FreiburgDept. of Medicine II/Molecular BiologyMedical CenterUniversity of FreiburgFreiburgGermany
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect7 passage du Vercors69367LyonFrance
| | | |
Collapse
|
4
|
Callon M, Malär AA, Lecoq L, Dujardin M, Fogeron ML, Wang S, Schledorn M, Bauer T, Nassal M, Böckmann A, Meier BH. Fast Magic‐Angle‐Spinning NMR Reveals the Evasive Hepatitis B Virus Capsid C‐Terminal Domain. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Morgane Callon
- ETH Zurich D-CHAB: Eidgenossische Technische Hochschule Zurich Departement Chemie und Angewandte Biowissenschaften D-CHAB SWITZERLAND
| | - Alexander A. Malär
- ETH Zurich D-CHAB: Eidgenossische Technische Hochschule Zurich Departement Chemie und Angewandte Biowissenschaften D-CHAB SWITZERLAND
| | | | | | | | | | - Maarten Schledorn
- ETH Zurich D-CHAB: Eidgenossische Technische Hochschule Zurich Departement Chemie und Angewandte Biowissenschaften D-CHAB SWITZERLAND
| | - Thomas Bauer
- ETH Zurich D-CHAB: Eidgenossische Technische Hochschule Zurich Departement Chemie und Angewandte Biowissenschaften D-CHAB SWITZERLAND
| | - Michael Nassal
- University of Freiburg Hospital: Universitatsklinikum Freiburg Molecular Biology GERMANY
| | | | - Beat H Meier
- ETH Zurich D-CHAB: Eidgenossische Technische Hochschule Zurich Departement Chemie und Angewandte Biowissenschaften Department of Physical Chemistry Wolfgang-Pauli-Strasse 10 8093 Zürich SWITZERLAND
| |
Collapse
|
5
|
Harati Taji Z, Bielytskyi P, Shein M, Sani MA, Seitz S, Schütz AK. Transient RNA Interactions Leave a Covalent Imprint on a Viral Capsid Protein. J Am Chem Soc 2022; 144:8536-8550. [PMID: 35512333 PMCID: PMC9121876 DOI: 10.1021/jacs.1c12439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The hepatitis B virus (HBV) is the leading cause of persistent liver infections. Its DNA-based genome is synthesized through reverse transcription of an RNA template inside the assembled capsid shell. In addition to the structured assembly domain, the capsid protein harbors a C-terminal extension that mediates both the enclosure of RNA during capsid assembly and the nuclear entry of the capsid during infection. The arginine-rich motifs within this extension, though common to many viruses, have largely escaped atomic-scale investigation. Here, we leverage solution and solid-state nuclear magnetic resonance spectroscopy at ambient and cryogenic temperatures, under dynamic nuclear polarization signal enhancement, to investigate the organization of the genome within the capsid. Transient interactions with phosphate groups of the RNA backbone confine the arginine-rich motifs to the interior capsid space. While no secondary structure is induced in the C-terminal extension, interactions with RNA counteract the formation of a disulfide bond, which covalently tethers this peptide arm onto the inner capsid surface. Electrostatic and covalent contributions thus compete in the spatial regulation of capsid architecture. This disulfide switch represents a coupling mechanism between the structured assembly domain of the capsid and the enclosed nucleic acids. In particular, it enables the redox-dependent regulation of the exposure of the C-terminal extension on the capsid surface, which is required for nuclear uptake of the capsid. Phylogenetic analysis of capsid proteins from hepadnaviruses points toward a function of this switch in the persistence of HBV infections.
Collapse
Affiliation(s)
- Zahra Harati Taji
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Pavlo Bielytskyi
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Mikhail Shein
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Stefan Seitz
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg 69120, Germany.,Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Anne K Schütz
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| |
Collapse
|
6
|
Malär AA, Callon M, Smith AA, Wang S, Lecoq L, Pérez-Segura C, Hadden-Perilla JA, Böckmann A, Meier BH. Experimental Characterization of the Hepatitis B Virus Capsid Dynamics by Solid-State NMR. Front Mol Biosci 2022; 8:807577. [PMID: 35047563 PMCID: PMC8762115 DOI: 10.3389/fmolb.2021.807577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 01/14/2023] Open
Abstract
Protein plasticity and dynamics are important aspects of their function. Here we use solid-state NMR to experimentally characterize the dynamics of the 3.5 MDa hepatitis B virus (HBV) capsid, assembled from 240 copies of the Cp149 core protein. We measure both T1 and T1ρ relaxation times, which we use to establish detectors on the nanosecond and microsecond timescale. We compare our results to those from a 1 microsecond all-atom Molecular Dynamics (MD) simulation trajectory for the capsid. We show that, for the constituent residues, nanosecond dynamics are faithfully captured by the MD simulation. The calculated values can be used in good approximation for the NMR-non-detected residues, as well as to extrapolate into the range between the nanosecond and microsecond dynamics, where NMR has a blind spot at the current state of technology. Slower motions on the microsecond timescale are difficult to characterize by all-atom MD simulations owing to computational expense, but are readily accessed by NMR. The two methods are, thus, complementary, and a combination thereof can reliably characterize motions covering correlation times up to a few microseconds.
Collapse
Affiliation(s)
| | | | - Albert A Smith
- Institute of Medical Physics and Biophysics, Universität Leipzig, Leipzig, Germany
| | - Shishan Wang
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS-Université de Lyon, Labex Ecofect, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS-Université de Lyon, Labex Ecofect, Lyon, France
| | - Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Jodi A Hadden-Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS-Université de Lyon, Labex Ecofect, Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Briday M, Hallé F, Lecoq L, Radix S, Martin J, Montserret R, Dujardin M, Fogeron ML, Nassal M, Meier BH, Lomberget T, Böckmann A. Pharmacomodulation of a ligand targeting the HBV capsid hydrophobic pocket. Chem Sci 2022; 13:8840-8847. [PMID: 36042894 PMCID: PMC9358932 DOI: 10.1039/d2sc02420a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatitis B virus (HBV) is a small enveloped retrotranscribing DNA virus and an important human pathogen. Its capsid-forming core protein (Cp) features a hydrophobic pocket proposed to be central notably in capsid envelopment. Indeed, mutations in and around this pocket can profoundly modulate, and even abolish, secretion of enveloped virions. We have recently shown that Triton X-100, a detergent used during Cp purification, binds to the hydrophobic pocket with micromolar affinity. We here performed pharmacomodulation of pocket binders through systematic modifications of the three distinct chemical moieties composing the Triton X-100 molecule. Using NMR and ITC, we found that the flat aromatic moiety is essential for binding, while the number of atoms of the aliphatic chain modulates binding affinity. The hydrophilic tail, in contrast, is highly tolerant to changes in both length and type. Our data provide essential information for designing a new class of HBV antivirals targeting capsid–envelope interactions. Small-molecule binding to the Hepatitis B virus core protein hydrophobic pocket, a possible strategy for targeting viral particle assembly.![]()
Collapse
Affiliation(s)
- Mathilde Briday
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| | - François Hallé
- Université de Lyon, Université Lyon 1, CNRS UMR 5246 Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Faculté de Pharmacie-ISPB, 8 Avenue Rockefeller, FR-69373 Lyon Cedex 08, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| | - Sylvie Radix
- Université de Lyon, Université Lyon 1, CNRS UMR 5246 Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Faculté de Pharmacie-ISPB, 8 Avenue Rockefeller, FR-69373 Lyon Cedex 08, France
| | - Juliette Martin
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| | - Roland Montserret
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| | - Marie Dujardin
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| | - Michael Nassal
- Department of Medicine II/Molecular Biology, University Hospital Freiburg, Medical Center, University of Freiburg, Freiburg 79106, Germany
| | - Beat H. Meier
- Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Thierry Lomberget
- Université de Lyon, Université Lyon 1, CNRS UMR 5246 Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Faculté de Pharmacie-ISPB, 8 Avenue Rockefeller, FR-69373 Lyon Cedex 08, France
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| |
Collapse
|
8
|
Menou L, Salas YC, Lecoq L, Salvetti A, Moskalenko CF, Castelnovo M. Stiffness heterogeneity of small viral capsids. Phys Rev E 2021; 104:064408. [PMID: 35030852 DOI: 10.1103/physreve.104.064408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022]
Abstract
Nanoindentation of viral capsids provides an efficient tool in order to probe their elastic properties. We investigate in the present work the various sources of stiffness heterogeneity as observed in atomic force microscopy experiments. By combining experimental results with both numerical and analytical modeling, we first show that for small viruses, a position-dependent stiffness is observed. This effect is strong and has not been properly taken into account previously. Moreover, we show that a geometrical model is able to reproduce this effect quantitatively. Our work suggests alternative ways of measuring stiffness heterogeneities on small viral capsids. This is illustrated on two different viral capsids: Adeno associated virus serotype 8 (AAV8) and hepatitis B virus (HBV with T=4). We discuss our results in light of continuous elasticity modeling.
Collapse
Affiliation(s)
- Lucas Menou
- Université de Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | | | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, University of Lyon 1, Lyon, France
| | - Anna Salvetti
- International Center for Research in Infectiology (CIRI), INSERM U111, CNRS UMR 5308, Lyon, France
| | | | - Martin Castelnovo
- Université de Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
9
|
Niklasch M, Zimmermann P, Nassal M. The Hepatitis B Virus Nucleocapsid-Dynamic Compartment for Infectious Virus Production and New Antiviral Target. Biomedicines 2021; 9:1577. [PMID: 34829806 PMCID: PMC8615760 DOI: 10.3390/biomedicines9111577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a small enveloped DNA virus which replicates its tiny 3.2 kb genome by reverse transcription inside an icosahedral nucleocapsid, formed by a single ~180 amino acid capsid, or core, protein (Cp). HBV causes chronic hepatitis B (CHB), a severe liver disease responsible for nearly a million deaths each year. Most of HBV's only seven primary gene products are multifunctional. Though less obvious than for the multi-domain polymerase, P protein, this is equally crucial for Cp with its multiple roles in the viral life-cycle. Cp provides a stable genome container during extracellular phases, allows for directed intracellular genome transport and timely release from the capsid, and subsequent assembly of new nucleocapsids around P protein and the pregenomic (pg) RNA, forming a distinct compartment for reverse transcription. These opposing features are enabled by dynamic post-transcriptional modifications of Cp which result in dynamic structural alterations. Their perturbation by capsid assembly modulators (CAMs) is a promising new antiviral concept. CAMs inappropriately accelerate assembly and/or distort the capsid shell. We summarize the functional, biochemical, and structural dynamics of Cp, and discuss the therapeutic potential of CAMs based on clinical data. Presently, CAMs appear as a valuable addition but not a substitute for existing therapies. However, as part of rational combination therapies CAMs may bring the ambitious goal of a cure for CHB closer to reality.
Collapse
Affiliation(s)
| | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany; (M.N.); (P.Z.)
| |
Collapse
|
10
|
Abstract
Viral hepatitis causes more deaths than tuberculosis and HIV-1 infection. Most cases are due to chronic infection with hepatitis B virus (HBV), which afflicts >250 million people. Current therapies are rarely curative, and new approaches are needed. Here, we report the discovery (by nuclear magnetic resonance) of a small molecule binder in the hydrophobic pocket in the HBV capsid. This structural element is, in an unknown manner, central in capsid envelopment. Binding of the pocket factor induces a distinct, stable conformation in the capsid, as expected for a signaling switch. This brings not only a new molecular view on the mechanism underlying capsid envelopment, but it also opens a rationale for its inhibition. Viral hepatitis is growing into an epidemic illness, and it is urgent to neutralize the main culprit, hepatitis B virus (HBV), a small-enveloped retrotranscribing DNA virus. An intriguing observation in HB virion morphogenesis is that capsids with immature genomes are rarely enveloped and secreted. This prompted, in 1982, the postulate that a regulated conformation switch in the capsid triggers envelopment. Using solid-state NMR, we identified a stable alternative conformation of the capsid. The structural variations focus on the hydrophobic pocket of the core protein, a hot spot in capsid–envelope interactions. This structural switch is triggered by specific, high-affinity binding of a pocket factor. The conformational change induced by the binding is reminiscent of a maturation signal. This leads us to formulate the “synergistic double interaction” hypothesis, which explains the regulation of capsid envelopment and indicates a concept for therapeutic interference with HBV envelopment.
Collapse
|
11
|
Porat G, Lusky OS, Dayan N, Goldbourt A. Nonuniformly sampled exclusively- 13 C/ 15 N 4D solid-state NMR experiments: Assignment and characterization of IKe phage capsid. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:237-246. [PMID: 32603513 DOI: 10.1002/mrc.5072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/11/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
An important step in the process of protein research by NMR is the assignment of chemical shifts. In the coat protein of IKe bacteriophage, there are 53 residues making up a long helix resulting in relatively high spectral ambiguity. Assignment thus requires the collection of a set of three-dimensional (3D) experiments and the preparation of sparsely labeled samples. Increasing the dimensionality can facilitate fast and reliable assignment of IKe and of larger proteins. Recent progress in nonuniform sampling techniques made the application of multidimensional NMR solid-state experiments beyond 3D more practical. 4D 1 H-detected experiments have been demonstrated in high-fields and at spinning speeds of 60 kHz and higher but are not practical at spinning speeds of 10-20 kHz for fully protonated proteins. Here, we demonstrate the applicability of a nonuniformly sampled 4D 13 C/15 N-only correlation experiment performed at a moderate field of 14.1 T, which can incorporate sufficiently long acquisition periods in all dimensions. We show how a single CANCOCX experiment, supported by several 2D carbon-based correlation experiments, is utilized for the assignment of heteronuclei in the coat protein of the IKe bacteriophage. One sparsely labeled sample was used to validate sidechain assignment of several hydrophobic-residue sidechains. A comparison to solution NMR studies of isolated IKe coat proteins embedded in micelles points to key residues involved in structural rearrangement of the capsid upon assembly of the virus. The benefits of 4D to a quicker assignment are discussed, and the method may prove useful for studying proteins at relatively low fields.
Collapse
Affiliation(s)
- Gal Porat
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, USA
| | - Orr Simon Lusky
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Nir Dayan
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
- Schulich Faculty of Chemistry, Technion-Institute of Technology, Haifa, Israel
| | - Amir Goldbourt
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| |
Collapse
|
12
|
Solid-State NMR for Studying the Structure and Dynamics of Viral Assemblies. Viruses 2020; 12:v12101069. [PMID: 32987909 PMCID: PMC7599928 DOI: 10.3390/v12101069] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Structural virology reveals the architecture underlying infection. While notably electron microscopy images have provided an atomic view on viruses which profoundly changed our understanding of these assemblies incapable of independent life, spectroscopic techniques like NMR enter the field with their strengths in detailed conformational analysis and investigation of dynamic behavior. Typically, the large assemblies represented by viral particles fall in the regime of biological high-resolution solid-state NMR, able to follow with high sensitivity the path of the viral proteins through their interactions and maturation steps during the viral life cycle. We here trace the way from first solid-state NMR investigations to the state-of-the-art approaches currently developing, including applications focused on HIV, HBV, HCV and influenza, and an outlook to the possibilities opening in the coming years.
Collapse
|
13
|
Expression of quasi-equivalence and capsid dimorphism in the Hepadnaviridae. PLoS Comput Biol 2020; 16:e1007782. [PMID: 32310951 PMCID: PMC7192502 DOI: 10.1371/journal.pcbi.1007782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/30/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) is a leading cause of liver disease. The capsid is an essential component of the virion and it is therefore of interest how it assembles and disassembles. The capsid protein is unusual both for its rare fold and that it polymerizes according to two different icosahedral symmetries, causing the polypeptide chain to exist in seven quasi-equivalent environments: A, B, and C in AB and CC dimers in T = 3 capsids, and A, B, C, and D in AB and CD dimers in T = 4 capsids. We have compared the two capsids by cryo-EM at 3.5 Å resolution. To ensure a valid comparison, the two capsids were prepared and imaged under identical conditions. We find that the chains have different conformations and potential energies, with the T = 3 C chain having the lowest. Three of the four quasi-equivalent dimers are asymmetric with respect to conformation and potential energy; however, the T = 3 CC dimer is symmetrical and has the lowest potential energy although its intra-dimer interface has the least free energy of formation. Of all the inter-dimer interfaces, the CB interface has the least area and free energy, in both capsids. From the calculated energies of higher-order groupings of dimers discernible in the lattices we predict early assembly intermediates, and indeed we observe such structures by negative stain EM of in vitro assembly reactions. By sequence analysis and computational alanine scanning we identify key residues and motifs involved in capsid assembly. Our results explain several previously reported observations on capsid assembly, disassembly, and dimorphism. Hepatitis B virus has infected approximately one third of the human population and causes almost 1 million deaths from liver disease annually. The capsid is a defining feature of a virus, distinct from host components, and therefore a target for intervention. Unusually for a virus, Hepatitis B assembles two capsids, with different geometries, from the same dimeric protein. Geometric principles dictate that the subunits in this system occupy seven different environments. From comparing the two capsids by cryo-electron microscopy at high resolution under the exact same conditions we find that the polypeptide chains adopt seven different conformations. We use these structures to calculate potential energies (analogous to elastic deformation or strain) for the individual chains, dimers, and several higher-order groupings discernible in the two lattices. We also calculate the binding energies between chains. We find that some groupings have substantially lower energy and are therefore potentially more stable, allowing us to predict likely intermediates on the two assembly pathways. We also observe such intermediates by electron microscopy of in vitro capsid assembly reactions. This is the first structural characterization of the early assembly intermediates of this important human pathogen.
Collapse
|
14
|
Wiegand T. A solid-state NMR tool box for the investigation of ATP-fueled protein engines. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:1-32. [PMID: 32471533 DOI: 10.1016/j.pnmrs.2020.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Motor proteins are involved in a variety of cellular processes. Their main purpose is to convert the chemical energy released during adenosine triphosphate (ATP) hydrolysis into mechanical work. In this review, solid-state Nuclear Magnetic Resonance (NMR) approaches are discussed allowing studies of structures, conformational events and dynamic features of motor proteins during a variety of enzymatic reactions. Solid-state NMR benefits from straightforward sample preparation based on sedimentation of the proteins directly into the Magic-Angle Spinning (MAS) rotor. Protein resonance assignment is the crucial and often time-limiting step in interpreting the wealth of information encoded in the NMR spectra. Herein, potentials, challenges and limitations in resonance assignment for large motor proteins are presented, focussing on both biochemical and spectroscopic approaches. This work highlights NMR tools available to study the action of the motor domain and its coupling to functional processes, as well as to identify protein-nucleotide interactions during events such as DNA replication. Arrested protein states of reaction coordinates such as ATP hydrolysis can be trapped for NMR studies by using stable, non-hydrolysable ATP analogues that mimic the physiological relevant states as accurately as possible. Recent advances in solid-state NMR techniques ranging from Dynamic Nuclear Polarization (DNP), 31P-based heteronuclear correlation experiments, 1H-detected spectra at fast MAS frequencies >100 kHz to paramagnetic NMR are summarized and their applications to the bacterial DnaB helicase from Helicobacter pylori are discussed.
Collapse
Affiliation(s)
- Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
15
|
Wang S, Fogeron ML, Schledorn M, Dujardin M, Penzel S, Burdette D, Berke JM, Nassal M, Lecoq L, Meier BH, Böckmann A. Combining Cell-Free Protein Synthesis and NMR Into a Tool to Study Capsid Assembly Modulation. Front Mol Biosci 2019; 6:67. [PMID: 31440516 PMCID: PMC6694763 DOI: 10.3389/fmolb.2019.00067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Modulation of capsid assembly by small molecules has become a central concept in the fight against viral infection. Proper capsid assembly is crucial to form the high molecular weight structures that protect the viral genome and that, often in concert with the envelope, allow for cell entry and fusion. Atomic details underlying assembly modulation are generally studied using preassembled protein complexes, while the activity of assembly modulators during assembly remains largely open and poorly understood, as necessary tools are lacking. We here use the full-length hepatitis B virus (HBV) capsid protein (Cp183) as a model to present a combination of cell-free protein synthesis and solid-state NMR as an approach which shall open the possibility to produce and analyze the formation of higher-order complexes directly on exit from the ribosome. We demonstrate that assembled capsids can be synthesized in amounts sufficient for structural studies, and show that addition of assembly modulators to the cell-free reaction produces objects similar to those obtained by addition of the compounds to preformed Cp183 capsids. These results establish the cell-free system as a tool for the study of capsid assembly modulation directly after synthesis by the ribosome, and they open the perspective of assessing the impact of natural or synthetic compounds, or even enzymes that perform post-translational modifications, on capsids structures.
Collapse
Affiliation(s)
- Shishan Wang
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | - Marie Dujardin
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | | | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| |
Collapse
|
16
|
Lecoq L, Schledorn M, Wang S, Smith-Penzel S, Malär AA, Callon M, Nassal M, Meier BH, Böckmann A. 100 kHz MAS Proton-Detected NMR Spectroscopy of Hepatitis B Virus Capsids. Front Mol Biosci 2019; 6:58. [PMID: 31396521 PMCID: PMC6668038 DOI: 10.3389/fmolb.2019.00058] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022] Open
Abstract
We sequentially assigned the fully-protonated capsids made from core proteins of the Hepatitis B virus using proton detection at 100 kHz magic-angle spinning (MAS) in 0.7 mm rotors and compare sensitivity and assignment completeness to previously obtained assignments using carbon-detection techniques in 3.2 mm rotors and 17.5 kHz MAS. We show that proton detection shows a global gain of a factor ~50 in mass sensitivity, but that signal-to-noise ratios and completeness of the assignment was somewhat higher for carbon-detected experiments for comparable experimental times. We also show that deuteration and HN back protonation improves the proton linewidth at 100 kHz MAS by a factor of 1.5, from an average of 170-110 Hz, and by a factor of 1.3 compared to deuterated capsids at 60 kHz MAS in a 1.3 mm rotor. Yet, several HN protons cannot be back-exchanged due to solvent inaccessibility, which results in a total of 15% of the amides missing in the spectra.
Collapse
Affiliation(s)
- Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | - Shishan Wang
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | | | | | - Michael Nassal
- Department of Medicine II/Molecular Biology, Medical Center, University Hospital Freiburg, University of Freiburg, Freiburg, Germany
| | | | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| |
Collapse
|