1
|
Bali A, Bitter T, Mafra M, Ballmaier J, Kouka M, Schneider G, Mühlig A, Ziller N, Werner T, von Eggeling F, Guntinas-Lichius O, Pertzborn D. Endoscopic In Vivo Hyperspectral Imaging for Head and Neck Tumor Surgeries Using a Medically Approved CE-Certified Camera with Rapid Visualization During Surgery. Cancers (Basel) 2024; 16:3785. [PMID: 39594741 PMCID: PMC11592278 DOI: 10.3390/cancers16223785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Background: In vivo visualization of malignant tumors remains the main challenge during head and neck cancer surgery. This can result in inadequate tumor margin assessment and incomplete tumor resection, adversely affecting patient outcomes. Hyperspectral imaging (HSI) is a promising approach to address this issue. However, its application in surgery has been limited by the lack of medically approved HSI devices compliant with MDR regulations, as well as challenges regarding the integration into the surgical workflow. Methods: In this feasibility study, we employed endoscopic HSI during surgery to visualize the tumor sites of 12 head and neck cancer patients. We optimized the HSI workflow to minimize time required during surgery and to reduce the adaptation period needed for surgeons to adjust to the new workflow. Additionally, we implemented data processing to enable real-time classification and visualization of HSI within the intraoperative setting. HSI evaluation was conducted using principal component analysis and k-means clustering, with this clustering validated through comparison with expert annotations. Results: Our complete HSI workflow requires two to three minutes, with each HSI measurement-including evaluation and visualization-taking less than 10 s, achieving an accuracy of 79%, sensitivity of 72%, and specificity of 84%. Medical personnel became proficient with the HSI system after two surgeries. Conclusions: This study presents an HSI workflow for in vivo tissue differentiation during head and neck cancer surgery, providing accurate and visually accessible results within minimal time. This approach enhances the in vivo evaluation of tumor margins, leading to more clear margins and, consequently, improved patient outcomes.
Collapse
Affiliation(s)
- Ayman Bali
- Clinical Biophotonics & MALDI Imaging, Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany; (A.B.); (M.M.); (A.M.); (N.Z.); (T.W.); (F.v.E.); (O.G.-L.)
| | - Thomas Bitter
- Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany; (T.B.); (J.B.); (M.K.); (G.S.)
| | - Marcela Mafra
- Clinical Biophotonics & MALDI Imaging, Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany; (A.B.); (M.M.); (A.M.); (N.Z.); (T.W.); (F.v.E.); (O.G.-L.)
| | - Jonas Ballmaier
- Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany; (T.B.); (J.B.); (M.K.); (G.S.)
| | - Mussab Kouka
- Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany; (T.B.); (J.B.); (M.K.); (G.S.)
| | - Gerlind Schneider
- Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany; (T.B.); (J.B.); (M.K.); (G.S.)
| | - Anna Mühlig
- Clinical Biophotonics & MALDI Imaging, Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany; (A.B.); (M.M.); (A.M.); (N.Z.); (T.W.); (F.v.E.); (O.G.-L.)
- Comprehensive Cancer Center Central Germany, 07747 Jena, Germany
| | - Nadja Ziller
- Clinical Biophotonics & MALDI Imaging, Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany; (A.B.); (M.M.); (A.M.); (N.Z.); (T.W.); (F.v.E.); (O.G.-L.)
| | - Theresa Werner
- Clinical Biophotonics & MALDI Imaging, Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany; (A.B.); (M.M.); (A.M.); (N.Z.); (T.W.); (F.v.E.); (O.G.-L.)
| | - Ferdinand von Eggeling
- Clinical Biophotonics & MALDI Imaging, Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany; (A.B.); (M.M.); (A.M.); (N.Z.); (T.W.); (F.v.E.); (O.G.-L.)
| | - Orlando Guntinas-Lichius
- Clinical Biophotonics & MALDI Imaging, Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany; (A.B.); (M.M.); (A.M.); (N.Z.); (T.W.); (F.v.E.); (O.G.-L.)
- Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany; (T.B.); (J.B.); (M.K.); (G.S.)
| | - David Pertzborn
- Clinical Biophotonics & MALDI Imaging, Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany; (A.B.); (M.M.); (A.M.); (N.Z.); (T.W.); (F.v.E.); (O.G.-L.)
| |
Collapse
|
2
|
Pertzborn D, Bali A, Mühlig A, von Eggeling F, Guntinas-Lichius O. Hyperspectral imaging and evaluation of surgical margins: where do we stand? Curr Opin Otolaryngol Head Neck Surg 2024; 32:96-104. [PMID: 38193544 DOI: 10.1097/moo.0000000000000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW To highlight the recent literature on the use of hyperspectral imaging (HSI) for cancer margin evaluation ex vivo, for head and neck cancer pathology and in vivo during head and neck cancer surgery. RECENT FINDINGS HSI can be used ex vivo on unstained and stained tissue sections to analyze head and neck tissue and tumor cells in combination with machine learning approaches to analyze head and neck cancer cell characteristics and to discriminate the tumor border from normal tissue. Data on in vivo applications during head and neck cancer surgery are preliminary and limited. Even now an accuracy of 80% for tumor versus nonneoplastic tissue classification can be achieved for certain tasks, within the current in vivo settings. SUMMARY Significant progress has been made to introduce HSI for ex vivo head and neck cancer pathology evaluation and for an intraoperative use to define the tumor margins. To optimize the accuracy for in vivo use, larger HSI databases with annotations for head and neck cancer are needed.
Collapse
Affiliation(s)
- David Pertzborn
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | | | | | | | | |
Collapse
|