1
|
Feuerherd M, Sippel AK, Erber J, Baumbach JI, Schmid RM, Protzer U, Voit F, Spinner CD. A proof of concept study for the differentiation of SARS-CoV-2, hCoV-NL63, and IAV-H1N1 in vitro cultures using ion mobility spectrometry. Sci Rep 2021; 11:20143. [PMID: 34635788 PMCID: PMC8505652 DOI: 10.1038/s41598-021-99742-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Rapid, high-throughput diagnostic tests are essential to decelerate the spread of the novel coronavirus disease 2019 (COVID-19) pandemic. While RT-PCR tests performed in centralized laboratories remain the gold standard, rapid point-of-care antigen tests might provide faster results. However, they are associated with markedly reduced sensitivity. Bedside breath gas analysis of volatile organic compounds detected by ion mobility spectrometry (IMS) may enable a quick and sensitive point-of-care testing alternative. In this proof-of-concept study, we investigated whether gas analysis by IMS can discriminate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from other respiratory viruses in an experimental set-up. Repeated gas analyses of air samples collected from the headspace of virus-infected in vitro cultures were performed for 5 days. A three-step decision tree using the intensities of four spectrometry peaks correlating to unidentified volatile organic compounds allowed the correct classification of SARS-CoV-2, human coronavirus-NL63, and influenza A virus H1N1 without misassignment when the calculation was performed with data 3 days post infection. The forward selection assignment model allowed the identification of SARS-CoV-2 with high sensitivity and specificity, with only one of 231 measurements (0.43%) being misclassified. Thus, volatile organic compound analysis by IMS allows highly accurate differentiation of SARS-CoV-2 from other respiratory viruses in an experimental set-up, supporting further research and evaluation in clinical studies.
Collapse
Affiliation(s)
- M Feuerherd
- Institute of Virology, School of Medicine, Technical University of Munich, 81675, Munich, Germany.
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany.
| | - A-K Sippel
- B. Braun Melsungen AG, Branch Dortmund, Center of Competence Breath Analysis, BioMedicalCenter, Dortmund, Germany
| | - J Erber
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - J I Baumbach
- B. Braun Melsungen AG, Branch Dortmund, Center of Competence Breath Analysis, BioMedicalCenter, Dortmund, Germany
| | - R M Schmid
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - U Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, 81675, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - F Voit
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - C D Spinner
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| |
Collapse
|
2
|
Hüppe T, Lorenz D, Maurer F, Fink T, Klumpp R, Kreuer S. Quantification of Volatile Acetone Oligomers Using Ion-Mobility Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6638036. [PMID: 34395017 PMCID: PMC8355975 DOI: 10.1155/2021/6638036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Volatile acetone is a potential biomarker that is elevated in various disease states. Measuring acetone in exhaled breath is complicated by the fact that the molecule might be present as both monomers and dimers, but in inconsistent ratios. Ignoring the molecular form leads to incorrect measured concentrations. Our first goal was to evaluate the monomer-dimer ratio in ambient air, critically ill patients, and rats. Our second goal was to confirm the accuracy of the combined (monomer and dimer) analysis by comparison to a reference calibration system. METHODS Volatile acetone intensities from exhaled air of ten intubated, critically ill patients, and ten ventilated Sprague-Dawley rats were recorded using ion-mobility spectrometry. Acetone concentrations in ambient air in an intensive care unit and in a laboratory were determined over 24 hours. The calibration reference was pure acetone vaporized by a gas generator at concentrations from 5 to 45 ppbv (parts per billion by volume). RESULTS Acetone concentrations in ambient laboratory air were only slightly greater (5.6 ppbv; 95% CI 5.1-6.2) than in ambient air in an intensive care unit (5.1 ppbv; 95% CI 4.4-5.5; p < 0.001). Exhaled acetone concentrations were only slightly greater in rats (10.3 ppbv; 95% CI 9.7-10.9) than in critically ill patients (9.5 ppbv; 95% CI 7.9-11.1; p < 0.001). Vaporization yielded acetone monomers (1.3-5.3 mV) and dimers (1.4-621 mV). Acetone concentrations (ppbv) and corresponding acetone monomer and dimer intensities (mV) revealed a high coefficient of determination (R 2 = 0.96). The calibration curve for acetone concentration (ppbv) and total acetone (monomers added to twice the dimers; mV) was described by the exponential growth 3-parameter model, with an R 2 = 0.98. CONCLUSION The ratio of acetone monomer and dimer is inconsistent and varies in ambient air from place-to-place and across individual humans and rats. Monomers and dimers must therefore be considered when quantifying acetone. Combining the two accurately assesses total volatile acetone.
Collapse
Affiliation(s)
- Tobias Hüppe
- Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, Saarland 66424, Germany
| | - Dominik Lorenz
- Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, Saarland 66424, Germany
| | - Felix Maurer
- Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, Saarland 66424, Germany
| | - Tobias Fink
- Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, Saarland 66424, Germany
| | - Ramona Klumpp
- Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, Saarland 66424, Germany
| | - Sascha Kreuer
- Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, Saarland 66424, Germany
| |
Collapse
|
3
|
Kulas P, Seidel M, Bozzato A, Schick B, Sessler DI, Kreuer S, Hüppe T. Volatile organic compounds in head and neck squamous cell carcinoma-An in vitro pilot study. Biomed Chromatogr 2020; 34:e4811. [PMID: 32059060 DOI: 10.1002/bmc.4811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/02/2020] [Accepted: 02/11/2020] [Indexed: 11/07/2022]
Abstract
Owing to the lack of specific symptoms, diagnosis of head and neck squamous cell carcinoma (HNSCC) may be delayed. We evaluated volatile organic compounds in tumor samples from patients suffering from HNSCC and tested the hypothesis that there is a characteristic altered composition in the headspace of HNSCC compared with control samples from the same patient with normal squamous epithelium. These results provide the basis for future noninvasive breath analysis in HNSCC. Headspace air of suspected tumor and contralateral control samples in 20 patients were analyzed using ion-mobility spectrometry. Squamous cell carcinoma was diagnosed in 16 patients. In total, we observed 93 different signals in headspace measurements. Squamous cell carcinomas revealed significantly higher levels of volatile cyclohexanol (0.54 ppbv , 25th to 75th percentiles 0.35-0.86) compared with healthy squamous epithelium (0.24 ppbv , 25th to 75th percentiles 0.12-0.3; p < 0.001). In conclusion, head and neck squamous cell carcinoma emitted significantly higher levels of volatile cyclohexanol in headspace compared with normal squamous epithelium. These findings form the basis for future breath analysis for diagnosis, therapy control and the follow-up of HNSSC to improve therapy and aftercare.
Collapse
Affiliation(s)
- Philipp Kulas
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, Homburg (Saar), Germany
| | - Martin Seidel
- Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany
| | - Alessandro Bozzato
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, Homburg (Saar), Germany
| | - Bernhard Schick
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, Homburg (Saar), Germany
| | - Daniel I Sessler
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sascha Kreuer
- Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany
| | - Tobias Hüppe
- Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany
| |
Collapse
|
4
|
Volatile Organic Compounds in Patients With Acute Kidney Injury and Changes During Dialysis. Crit Care Med 2019; 47:239-246. [PMID: 30365402 DOI: 10.1097/ccm.0000000000003523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To characterize volatile organic compounds in breath exhaled by ventilated care patients with acute kidney injury and changes over time during dialysis. DESIGN Prospective observational feasibility study. SETTING Critically ill patients on an ICU in a University Hospital, Germany. PATIENTS Twenty sedated, intubated, and mechanically ventilated patients with acute kidney injury and indication for dialysis. INTERVENTIONS Patients exhalome was evaluated from at least 30 minutes before to 7 hours after beginning of continuous venovenous hemodialysis. MEASUREMENTS AND MAIN RESULTS Expired air samples were aspirated from the breathing circuit at 20-minute intervals and analyzed using multicapillary column ion-mobility spectrometry. Volatile organic compound intensities were compared with a ventilated control group with normal renal function. A total of 60 different signals were detected by multicapillary column ion-mobility spectrometry, of which 44 could be identified. Thirty-four volatiles decreased during hemodialysis, whereas 26 remained unaffected. Forty-five signals showed significant higher intensities in patients with acute kidney injury compared with control patients with normal renal function. Among these, 30 decreased significantly during hemodialysis. Volatile cyclohexanol (23 mV; 2575th, 19-38), 3-hydroxy-2-butanone (16 mV, 9-26), 3-methylbutanal (20 mV; 14-26), and dimer of isoprene (26 mV; 18-32) showed significant higher intensities in acute kidney impairment compared with control group (12 mV; 10-16 and 8 mV; 7-14 and not detectable and 4 mV; 0-6; p < 0.05) and a significant decline after 7 hours of continuous venovenous hemodialysis (16 mV; 13-21 and 7 mV; 6-13 and 9 mV; 8-13 and 14 mV; 10-19). CONCLUSIONS Exhaled concentrations of 45 volatile organic compounds were greater in critically ill patients with acute kidney injury than in patients with normal renal function. Concentrations of two-thirds progressively decreased during dialysis. Exhalome analysis may help quantify the severity of acute kidney injury and to gauge the efficacy of dialysis.
Collapse
|
5
|
Greulich T, Fischer H, Lubbe D, Nell C, Ingo Baumbach J, Koehler U, Boeselt T, Vogelmeier C, Koczulla AR. Obstructive sleep apnea patients can be identified by ion mobility spectrometry-derived smell prints of different biological materials. J Breath Res 2018; 12:026006. [PMID: 29083318 DOI: 10.1088/1752-7163/aa96e2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND The analysis of obstructive sleep apnoea syndrome (OSAS) is time- and cost-intensive. A number of studies demonstrated that the non-invasive analysis of exhaled breath (EB) may be suitable to distinguish between OSAS patients and healthy subjects (HS). Methods/Population: We included OSAS patients (n = 15) and HS (n = 15) in this diagnostic proof-of-concept-study. All participants underwent polygraphy to verify or exclude OSAS and performed spirometry to exclude pulmonary ventilatory diseases. The volatile organic compound profile of EB and of the headspaces over EB condensate, pharyngeal washing fluid, and serum was measured using ion mobility spectrometry (IMS) (BioScout®) and an e-nose (Cyranose® 320). For the statistical analysis, we fitted classification tree models using recursive partitioning, followed by a leave-one-out cross-validation. For the cross-validated predictions we calculated descriptive classification statistics, p-values from a [Formula: see text]-test with continuity correction, as well as ROC curves. RESULTS Using IMS, OSAS patients and HS could be distinguished with high accuracy (values ranged from 79% to 97%). The results of the e-nose-derived analyses (with the exception of EB) were less accurate. However, the cross-validated accuracy for EB was very good (0.9), reflecting a positive predictive value of 100% and a negative predictive value of 83%. For each material, we identified the best five substances that may be used for diagnostic purposes. 2-Methylfluran was found in three different biological materials to be discriminative between OSAS and HS. CONCLUSION The results strengthen the hypothesis that substances detectable in headspace measurements of different airway and blood materials may undergo a transition from blood into the alveoli (and EB) or vice versa. This means that substances from different compartments could be used to distinguish patients with airway diseases (in this case OSAS) from healthy controls.
Collapse
Affiliation(s)
- Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Centre Giessen and Marburg, Philipps-University, Member of the German Centre for Lung Research (DZL), D-35043 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hüppe T, Lorenz D, Wachowiak M, Maurer F, Meiser A, Groesdonk H, Fink T, Sessler DI, Kreuer S. Volatile organic compounds in ventilated critical care patients: a systematic evaluation of cofactors. BMC Pulm Med 2017; 17:116. [PMID: 28830533 PMCID: PMC5567647 DOI: 10.1186/s12890-017-0460-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/11/2017] [Indexed: 01/26/2023] Open
Abstract
Background Expired gas (exhalome) analysis of ventilated critical ill patients can be used for drug monitoring and biomarker diagnostics. However, it remains unclear to what extent volatile organic compounds are present in gases from intensive care ventilators, gas cylinders, central hospital gas supplies, and ambient air. We therefore systematically evaluated background volatiles in inspired gas and their influence on the exhalome. Methods We used multi-capillary column ion-mobility spectrometry (MCC-IMS) breath analysis in five mechanically ventilated critical care patients, each over a period of 12 h. We also evaluated volatile organic compounds in inspired gas provided by intensive care ventilators, in compressed air and oxygen from the central gas supply and cylinders, and in the ambient air of an intensive care unit. Volatiles detectable in both inspired and exhaled gas with patient-to-inspired gas ratios < 5 were defined as contaminating compounds. Results A total of 76 unique MCC-IMS signals were detected, with 39 being identified volatile compounds: 73 signals were from the exhalome, 12 were identified in inspired gas from critical care ventilators, and 34 were from ambient air. Five volatile compounds were identified from the central gas supply, four from compressed air, and 17 from compressed oxygen. We observed seven contaminating volatiles with patient-to-inspired gas ratios < 5, thus representing exogenous signals of sufficient magnitude that might potentially be mistaken for exhaled biomarkers. Conclusions Volatile organic compounds can be present in gas from central hospital supplies, compressed gas tanks, and ventilators. Accurate assessment of the exhalome in critical care patients thus requires frequent profiling of inspired gases and appropriate normalisation of the expired signals.
Collapse
Affiliation(s)
- Tobias Hüppe
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Centre of Breath Research, Saarland University Medical Centre, Kirrberger Strasse 100, 66421, Homburg (Saar), Germany.
| | - Dominik Lorenz
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Centre of Breath Research, Saarland University Medical Centre, Kirrberger Strasse 100, 66421, Homburg (Saar), Germany
| | - Mario Wachowiak
- Department of Anaesthesiology and Intensive Care, Klinikum Lünen St.-Marien-Hospital, Lünen, Germany
| | - Felix Maurer
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Centre of Breath Research, Saarland University Medical Centre, Kirrberger Strasse 100, 66421, Homburg (Saar), Germany
| | - Andreas Meiser
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Centre of Breath Research, Saarland University Medical Centre, Kirrberger Strasse 100, 66421, Homburg (Saar), Germany
| | - Heinrich Groesdonk
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Centre of Breath Research, Saarland University Medical Centre, Kirrberger Strasse 100, 66421, Homburg (Saar), Germany
| | - Tobias Fink
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Centre of Breath Research, Saarland University Medical Centre, Kirrberger Strasse 100, 66421, Homburg (Saar), Germany
| | - Daniel I Sessler
- Department of Outcomes Research, Anesthesiology Institute, ASCleveland Clinic, Cleveland, OH, USA
| | - Sascha Kreuer
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Centre of Breath Research, Saarland University Medical Centre, Kirrberger Strasse 100, 66421, Homburg (Saar), Germany
| |
Collapse
|
7
|
Christiansen A, Davidsen JR, Titlestad I, Vestbo J, Baumbach J. A systematic review of breath analysis and detection of volatile organic compounds in COPD. J Breath Res 2016; 10:034002. [DOI: 10.1088/1752-7155/10/3/034002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Szymańska E, Tinnevelt GH, Brodrick E, Williams M, Davies AN, van Manen HJ, Buydens LM. Increasing conclusiveness of clinical breath analysis by improved baseline correction of multi capillary column – ion mobility spectrometry (MCC-IMS) data. J Pharm Biomed Anal 2016; 127:170-5. [DOI: 10.1016/j.jpba.2016.01.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/14/2016] [Accepted: 01/23/2016] [Indexed: 11/29/2022]
|
9
|
Hüppe T, Lorenz D, Maurer F, Albrecht FW, Schnauber K, Wolf B, Sessler DI, Volk T, Fink T, Kreuer S. Exhalation of volatile organic compounds during hemorrhagic shock and reperfusion in rats: an exploratory trial. J Breath Res 2016; 10:016016. [DOI: 10.1088/1752-7155/10/1/016016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Szymańska E, Davies AN, Buydens LMC. Chemometrics for ion mobility spectrometry data: recent advances and future prospects. Analyst 2016; 141:5689-5708. [DOI: 10.1039/c6an01008c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This is the first comprehensive review on chemometric techniques used in ion mobility spectrometry data analysis.
Collapse
Affiliation(s)
- Ewa Szymańska
- Radboud University
- Institute for Molecules and Materials
- 6500 GL Nijmegen
- The Netherlands
- TI-COAST
| | - Antony N. Davies
- School of Applied Sciences
- Faculty of Computing
- Engineering and Science
- University of South Wales
- UK
| | | |
Collapse
|
11
|
Fink T, Albrecht FW, Maurer F, Kleber A, Hüppe T, Schnauber K, Wolf B, Baumbach JI, Volk T, Kreuer S. Exhalation pattern changes during fasting and low dose glucose treatment in rats. Anal Bioanal Chem 2015; 407:3763-73. [DOI: 10.1007/s00216-015-8602-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/12/2015] [Accepted: 02/26/2015] [Indexed: 12/30/2022]
|
12
|
Albrecht FW, Hüppe T, Fink T, Maurer F, Wolf A, Wolf B, Volk T, Baumbach JI, Kreuer S. Influence of the respirator on volatile organic compounds: an animal study in rats over 24 hours. J Breath Res 2015; 9:016007. [DOI: 10.1088/1752-7155/9/1/016007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|