1
|
Rimmerman ET, Stacy MR. Applications of SPECT and PET Imaging for the Physiological Evaluation of Lower Extremity Peripheral Artery Disease. Int J Mol Sci 2024; 25:7474. [PMID: 39000580 PMCID: PMC11242786 DOI: 10.3390/ijms25137474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Peripheral artery disease (PAD) is classified as the narrowing or complete occlusion of the lower extremity arteries due to atherosclerosis. The risk of developing PAD increases with increased age and risk factors such as smoking, diabetes, hypertension, and hypercholesterolemia. Current treatment for PAD involves lifestyle and symptom management, statin and antiplatelet therapy, and/or surgical interventions to improve quality of life with varying efficacy. PAD affects approximately 5 to 6 percent of the global population, with this global burden continuing to increase. Despite the increase in disease prevalence, no gold standard functional diagnostic tool has been established for enabling early detection of the disease, appropriate medical management, and prediction of adverse outcomes for PAD patients. The visualization and quantification of the physiological consequences of PAD are possible by way of nuclear imaging: specifically, via scintigraphy, single-photon emission computed tomography (SPECT), and positron emission tomography (PET) imaging. These non-invasive modalities, when combined with targeted radionuclides, possess utility for detecting functional perfusion deficits and provide unique insight into muscle tissue- and vascular-level characteristics of PAD patients. This review discusses the past, present, and emerging applications of hybrid nuclear imaging modalities in the evaluation and monitoring of patients with PAD.
Collapse
Affiliation(s)
- Eleanor T. Rimmerman
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Center for Regenerative Medicine, Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Mitchel R. Stacy
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Center for Regenerative Medicine, Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Division of Vascular Diseases and Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Callegari S, Feher A, Smolderen KG, Mena-Hurtado C, Sinusas AJ. Multi-modality imaging for assessment of the microcirculation in peripheral artery disease: Bench to clinical practice. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 42:100400. [PMID: 38779485 PMCID: PMC11108852 DOI: 10.1016/j.ahjo.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Peripheral artery disease (PAD) is a highly prevalent disorder with a high risk of mortality and amputation despite the introduction of novel medical and procedural treatments. Microvascular disease (MVD) is common among patients with PAD, and despite the established role as a predictor of amputations and mortality, MVD is not routinely assessed as part of current standard practice. Recent pre-clinical and clinical perfusion and molecular imaging studies have confirmed the important role of MVD in the pathogenesis and outcomes of PAD. The recent advancements in the imaging of the peripheral microcirculation could lead to a better understanding of the pathophysiology of PAD, and result in improved risk stratification, and our evaluation of response to therapies. In this review, we will discuss the current understanding of the anatomy and physiology of peripheral microcirculation, and the role of imaging for assessment of perfusion in PAD, and the latest advancements in molecular imaging. By highlighting the latest advancements in multi-modality imaging of the peripheral microcirculation, we aim to underscore the most promising imaging approaches and highlight potential research opportunities, with the goal of translating these approaches for improved and personalized management of PAD in the future.
Collapse
Affiliation(s)
- Santiago Callegari
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Kim G. Smolderen
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Mena-Hurtado
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Recent Advances in Cardiovascular Diseases Research Using Animal Models and PET Radioisotope Tracers. Int J Mol Sci 2022; 24:ijms24010353. [PMID: 36613797 PMCID: PMC9820417 DOI: 10.3390/ijms24010353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular diseases (CVD) is a collective term describing a range of conditions that affect the heart and blood vessels. Due to the varied nature of the disorders, distinguishing between their causes and monitoring their progress is crucial for finding an effective treatment. Molecular imaging enables non-invasive visualisation and quantification of biological pathways, even at the molecular and subcellular levels, what is essential for understanding the causes and development of CVD. Positron emission tomography imaging is so far recognized as the best method for in vivo studies of the CVD related phenomena. The imaging is based on the use of radioisotope-labelled markers, which have been successfully used in both pre-clinical research and clinical studies. Current research on CVD with the use of such radioconjugates constantly increases our knowledge and understanding of the causes, and brings us closer to effective monitoring and treatment. This review outlines recent advances in the use of the so-far available radioisotope markers in the research on cardiovascular diseases in rodent models, points out the problems and provides a perspective for future applications of PET imaging in CVD studies.
Collapse
|
4
|
Balogh V, MacAskill MG, Hadoke PWF, Gray GA, Tavares AAS. Positron Emission Tomography Techniques to Measure Active Inflammation, Fibrosis and Angiogenesis: Potential for Non-invasive Imaging of Hypertensive Heart Failure. Front Cardiovasc Med 2021; 8:719031. [PMID: 34485416 PMCID: PMC8416043 DOI: 10.3389/fcvm.2021.719031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure, which is responsible for a high number of deaths worldwide, can develop due to chronic hypertension. Heart failure can involve and progress through several different pathways, including: fibrosis, inflammation, and angiogenesis. Early and specific detection of changes in the myocardium during the transition to heart failure can be made via the use of molecular imaging techniques, including positron emission tomography (PET). Traditional cardiovascular PET techniques, such as myocardial perfusion imaging and sympathetic innervation imaging, have been established at the clinical level but are often lacking in pathway and target specificity that is important for assessment of heart failure. Therefore, there is a need to identify new PET imaging markers of inflammation, fibrosis and angiogenesis that could aid diagnosis, staging and treatment of hypertensive heart failure. This review will provide an overview of key mechanisms underlying hypertensive heart failure and will present the latest developments in PET probes for detection of cardiovascular inflammation, fibrosis and angiogenesis. Currently, selective PET probes for detection of angiogenesis remain elusive but promising PET probes for specific targeting of inflammation and fibrosis are rapidly progressing into clinical use.
Collapse
Affiliation(s)
- Viktoria Balogh
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mark G. MacAskill
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick W. F. Hadoke
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gillian A. Gray
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana A. S. Tavares
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Chou TH, Stacy MR. Clinical Applications for Radiotracer Imaging of Lower Extremity Peripheral Arterial Disease and Critical Limb Ischemia. Mol Imaging Biol 2019; 22:245-255. [PMID: 31482412 DOI: 10.1007/s11307-019-01425-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peripheral arterial disease (PAD) is an atherosclerotic occlusive disease of the non-coronary vessels that is characterized by lower extremity tissue ischemia, claudication, increased prevalence of lower extremity wounds and amputations, and impaired quality of life. Critical limb ischemia (CLI) represents the severe stage of PAD and is associated with additional risk for wound formation, amputation, and premature death. Standard clinical tools utilized for assessing PAD and CLI primarily focus on anatomical evaluation of peripheral vascular lesions or hemodynamic assessment of the peripheral circulation. Evaluation of underlying pathophysiology has traditionally been achieved by radiotracer-based imaging, with many clinical investigations focusing on imaging of skeletal muscle perfusion and cases of foot infection/inflammation such as osteomyelitis and Charcot neuropathic osteoarthropathy. As advancements in hybrid imaging systems and radiotracers continue to evolve, opportunities for molecular imaging of PAD and CLI are also emerging that may offer novel insight into associated complications such as peripheral atherosclerosis, alterations in skeletal muscle metabolism, and peripheral neuropathy. This review summarizes the pros and cons of radiotracer-based techniques that have been utilized in the clinical environment for evaluating lower extremity ischemia and common pathologies associated with PAD and CLI.
Collapse
Affiliation(s)
- Ting-Heng Chou
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, WB4131, Columbus, OH, 43215, USA
| | - Mitchel R Stacy
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, WB4131, Columbus, OH, 43215, USA. .,Division of Vascular Diseases and Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
6
|
Kapanadze T, Bankstahl JP, Wittneben A, Koestner W, Ballmaier M, Gamrekelashvili J, Krishnasamy K, Limbourg A, Ross TL, Meyer GJ, Haller H, Bengel FM, Limbourg FP. Multimodal and Multiscale Analysis Reveals Distinct Vascular, Metabolic and Inflammatory Components of the Tissue Response to Limb Ischemia. Am J Cancer Res 2019; 9:152-166. [PMID: 30662559 PMCID: PMC6332799 DOI: 10.7150/thno.27175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Ischemia triggers a complex tissue response involving vascular, metabolic and inflammatory changes. Methods: We combined hybrid SPECT/CT or PET/CT nuclear imaging studies of perfusion, metabolism and inflammation with multicolor flow cytometry-based cell population analysis to comprehensively analyze the ischemic tissue response and to elucidate the cellular substrate of noninvasive molecular imaging techniques in a mouse model of hind limb ischemia. Results: Comparative analysis of tissue perfusion with [99mTc]-Sestamibi and arterial influx with [99mTc]-labeled albumin microspheres by SPECT/CT revealed a distinct pattern of response to vascular occlusion: an early ischemic period of matched suppression of tissue perfusion and arterial influx, a subacute ischemic period of normalized arterial influx but impaired tissue perfusion, and a protracted post-ischemic period of hyperdynamic arterial and normalized tissue perfusion, indicating coordination of macrovascular and microvascular responses. In addition, the subacute period showed increased glucose uptake by [18F]-FDG PET/CT scanning as the metabolic response of viable tissue to hypoperfusion. This was associated with robust macrophage infiltration by flow cytometry, and glucose uptake studies identified macrophages as major contributors to glucose utilization in ischemic tissue. Furthermore, imaging with the TSPO ligand [18F]-GE180 showed a peaked response during the subacute phase due to preferential labeling of monocytes and macrophages, while imaging with [68Ga]-RGD, an integrin ligand, showed prolonged post-ischemic upregulation, which was attributed to labeling of macrophages and endothelial cells by flow cytometry. Conclusion: Combined nuclear imaging and cell population analysis reveals distinct components of the ischemic tissue response and associated cell subsets, which could be targeted for therapeutic interventions.
Collapse
|
7
|
Use of Cyclic Backbone NGR-Based SPECT to Increase Efficacy of Postmyocardial Infarction Angiogenesis Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:8638549. [PMID: 29204107 PMCID: PMC5674494 DOI: 10.1155/2017/8638549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/09/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022]
Abstract
As CD13 is selectively expressed in angiogenesis, it can serve as a target for molecular imaging tracers to noninvasively visualize angiogenic processes in vivo. The CD13-targeting moiety NGR was synthesized and cyclized by native chemical ligation (NCL) instead of disulfide bridging, leading to a cyclic peptide backbone: cyclo(Cys-Asn-Gly-Arg-Gly) (coNGR). Beside this new monomeric coNGR, a tetrameric NGR peptide co(NGR)4 was designed and synthesized. After radiolabeling, their in vitro and in vivo characteristics were determined. Both coNGR-based imaging agents displayed considerably higher standardized uptake values (SUVs) at infarcted areas compared to the previously reported disulfide-cyclized cNGR imaging agent. Uptake patterns of 111In-coNGR and 111In-co(NGR)4 coincided with CD13 immunohistochemistry on excised hearts. Blood stability tests indicated better stability for both novel imaging agents after 50 min blood incubation compared to the disulfide-cyclized cNGR imaging agent. In mice, both coNGR peptides cleared rapidly from the blood mainly via the kidneys. In addition, co(NGR)4 showed a significantly higher specific uptake in infarcted myocardium compared to coNGR and thus is a promising sensitive imaging agent for detection of angiogenesis in infarcted myocardium.
Collapse
|
8
|
Schwarz JCV, van Lier MGJTB, Bakker ENTP, de Vos J, Spaan JAE, VanBavel E, Siebes M. Optimization of Vascular Casting for Three-Dimensional Fluorescence Cryo-Imaging of Collateral Vessels in the Ischemic Rat Hindlimb. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:77-87. [PMID: 28228173 DOI: 10.1017/s1431927617000095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Development of collateral vessels, arteriogenesis, may protect against tissue ischemia, however, quantitative data on this process remain scarce. We have developed a technique for replicating the entire arterial network of ischemic rat hindlimbs in three dimensions (3D) based on vascular casting and automated sequential cryo-imaging. Various dilutions of Batson's No. 17 with methyl methacrylate were evaluated in healthy rats, with further protocol optimization in ischemic rats. Penetration of the resin into the vascular network greatly depended on dilution; the total length of casted vessels below 75 µm was 13-fold higher at 50% dilution compared with the 10% dilution. Dilutions of 25-30%, with transient clamping of the healthy iliac artery, were optimal for imaging the arterial network in unilateral ischemia. This protocol completely filled the lumina of small arterioles and collateral vessels. These appeared as thin anastomoses in healthy legs and increasingly larger vessels during ligation (median diameter 1 week: 63 µm, 4 weeks: 127 µm). The presented combination of quality casts with high-resolution cryo-imaging enables automated, detailed 3D analysis of collateral adaptation, which furthermore can be combined with co-registered 3D distributions of fluorescent molecular imaging markers reflecting biological activity or perfusion.
Collapse
Affiliation(s)
- Janina C V Schwarz
- Department of Biomedical Engineering and Physics,Academic Medical Center,University of Amsterdam,Meibergdreef 9, 1105 AZ Amsterdam,The Netherlands
| | - Monique G J T B van Lier
- Department of Biomedical Engineering and Physics,Academic Medical Center,University of Amsterdam,Meibergdreef 9, 1105 AZ Amsterdam,The Netherlands
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics,Academic Medical Center,University of Amsterdam,Meibergdreef 9, 1105 AZ Amsterdam,The Netherlands
| | - Judith de Vos
- Department of Biomedical Engineering and Physics,Academic Medical Center,University of Amsterdam,Meibergdreef 9, 1105 AZ Amsterdam,The Netherlands
| | - Jos A E Spaan
- Department of Biomedical Engineering and Physics,Academic Medical Center,University of Amsterdam,Meibergdreef 9, 1105 AZ Amsterdam,The Netherlands
| | - Ed VanBavel
- Department of Biomedical Engineering and Physics,Academic Medical Center,University of Amsterdam,Meibergdreef 9, 1105 AZ Amsterdam,The Netherlands
| | - Maria Siebes
- Department of Biomedical Engineering and Physics,Academic Medical Center,University of Amsterdam,Meibergdreef 9, 1105 AZ Amsterdam,The Netherlands
| |
Collapse
|
9
|
Luo L, Nishi K, Urata Y, Yan C, Hasan AS, Goto S, Kudo T, Li ZL, Li TS. Ionizing Radiation Impairs Endogenous Regeneration of Infarcted Heart: An In Vivo 18F-FDG PET/CT and 99mTc-Tetrofosmin SPECT/CT Study in Mice. Radiat Res 2016; 187:89-97. [PMID: 27922334 DOI: 10.1667/rr14543.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Epidemiological studies have suggested that ionizing radiation increases cardiovascular disease risk, but the relevant mechanism is poorly understood. We recently demonstrated that adult mice exposed to whole-body irradiation with 3 Gy gamma rays significantly decreases the number and quality of cardiac stem cells. To further determine if radiation impairs myocardial regenerative potency, a myocardial infarction model was established in adult C57BL/6 mice by ligating the left anterior descending artery approximately 6 h after sham- or whole-body gamma irradiation (0 or 3 Gy). To evaluate the regenerative potency of the infarcted heart, we measured the myocardial perfusion and remodeling by 18F-FDG PET/CT and 99mTc-tetrofosmin SPECT/CT at 1-2 days (baseline) and 14-15 days (end point) after infarction, respectively. Mice were sacrificed at day 15 after infarction, and heart tissue was collected for histological analysis. The infarct area of the left ventricle was significantly larger in irradiated mice than healthy controls 14 days after infarction, although it was similar between the groups at the baseline. However, histological analysis showed that the infarct size and left ventricle wall thickness were not significantly different among the groups. Compared to the healthy controls, irradiated mice had significantly less c-kit-positive stem cells, less Sca-1-positive stem cells, less proliferating cells, more apoptotic cells and lower vessel density within the infarcted heart. The results of this study suggest that whole-body irradiation with 3 Gy gamma rays impairs the endogenous regeneration of infarcted heart, which may indirectly predict future cardiovascular disease risk.
Collapse
Affiliation(s)
- Lan Luo
- a Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kodai Nishi
- b Department of Radioisotope Medicine, Atomic Bomb Disease Institute Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yoshishige Urata
- a Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Chen Yan
- a Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Al Shaimaa Hasan
- a Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shinji Goto
- a Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takashi Kudo
- b Department of Radioisotope Medicine, Atomic Bomb Disease Institute Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Zhao-Lan Li
- b Department of Radioisotope Medicine, Atomic Bomb Disease Institute Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tao-Sheng Li
- a Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
10
|
Vaquero JJ, Kinahan P. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems. Annu Rev Biomed Eng 2016; 17:385-414. [PMID: 26643024 DOI: 10.1146/annurev-bioeng-071114-040723] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.
Collapse
Affiliation(s)
- Juan José Vaquero
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Madrid, Spain, and Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
| | - Paul Kinahan
- Departments of Radiology, Bioengineering, and Physics, University of Washington, Seattle, Washington 98195;
| |
Collapse
|
11
|
Mandic L, Traxler D, Gugerell A, Zlabinger K, Lukovic D, Pavo N, Goliasch G, Spannbauer A, Winkler J, Gyöngyösi M. Molecular Imaging of Angiogenesis in Cardiac Regeneration. CURRENT CARDIOVASCULAR IMAGING REPORTS 2016; 9:27. [PMID: 27683600 PMCID: PMC5018257 DOI: 10.1007/s12410-016-9389-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Myocardial infarction (MI) leading to heart failure displays an important cause of death worldwide. Adequate restoration of blood flow to prevent this transition is a crucial factor to improve long-term morbidity and mortality. Novel regenerative therapies have been thoroughly investigated within the past decades. RECENT FINDINGS Increased angiogenesis in infarcted myocardium has shown beneficial effects on the prognosis of MI; therefore, the proangiogenic capacity of currently tested treatments is of specific interest. Molecular imaging to visualize formation of new blood vessels in vivo displays a promising option to monitor proangiogenic effects of regenerative substances. SUMMARY Based on encouraging results in preclinical models, molecular angiogenesis imaging has recently been applied in a small set of patients. This article reviews recent literature on noninvasive in vivo molecular imaging of angiogenesis after MI as an integral part of cardiac regeneration.
Collapse
Affiliation(s)
- Ljubica Mandic
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Denise Traxler
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Alfred Gugerell
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Katrin Zlabinger
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Dominika Lukovic
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Noemi Pavo
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Georg Goliasch
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Andreas Spannbauer
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Johannes Winkler
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
12
|
SPECT and PET imaging of angiogenesis and arteriogenesis in pre-clinical models of myocardial ischemia and peripheral vascular disease. Eur J Nucl Med Mol Imaging 2016; 43:2433-2447. [PMID: 27517840 PMCID: PMC5095166 DOI: 10.1007/s00259-016-3480-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/28/2016] [Indexed: 01/03/2023]
Abstract
Purpose The extent of neovascularization determines the clinical outcome of coronary artery disease and other occlusive cardiovascular disorders. Monitoring of neovascularization is therefore highly important. This review article will elaborately discuss preclinical studies aimed at validating new nuclear angiogenesis and arteriogenesis tracers. Additionally, we will briefly address possible obstacles that should be considered when designing an arteriogenesis radiotracer. Methods A structured medline search was the base of this review, which gives an overview on different radiopharmaceuticals that have been evaluated in preclinical models. Results Neovascularization is a collective term used to indicate different processes such as angiogenesis and arteriogenesis. However, while it is assumed that sensitive detection through nuclear imaging will facilitate translation of successful therapeutic interventions in preclinical models to the bedside, we still lack specific tracers for neovascularization imaging. Most nuclear imaging research to date has focused on angiogenesis, leaving nuclear arteriogenesis imaging largely overlooked. Conclusion Although angiogenesis is the process which is best understood, there is no scarcity in theoretical targets for arteriogenesis imaging.
Collapse
|
13
|
LeBlanc AJ, Hoying JB. Adaptation of the Coronary Microcirculation in Aging. Microcirculation 2016; 23:157-67. [DOI: 10.1111/micc.12264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Amanda J. LeBlanc
- Department of Physiology; Cardiovascular Innovation Institute; University of Louisville; Louisville Kentucky USA
| | - James B. Hoying
- Department of Physiology; Cardiovascular Innovation Institute; University of Louisville; Louisville Kentucky USA
| |
Collapse
|