1
|
Castorina L, Comis AD, Prestifilippo A, Quartuccio N, Panareo S, Filippi L, Castorina S, Giuffrida D. Innovations in Positron Emission Tomography and State of the Art in the Evaluation of Breast Cancer Treatment Response. J Clin Med 2023; 13:154. [PMID: 38202160 PMCID: PMC10779934 DOI: 10.3390/jcm13010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The advent of hybrid Positron Emission Tomography/Computed Tomography (PET/CT) and PET/Magnetic Resonance Imaging (MRI) scanners resulted in an increased clinical relevance of nuclear medicine in oncology. The use of [18F]-Fluorodeoxyglucose ([18F]FDG) has also made it possible to study tumors (including breast cancer) from not only a dimensional perspective but also from a metabolic point of view. In particular, the use of [18F]FDG PET allowed early confirmation of the efficacy or failure of therapy. The purpose of this review was to assess the literature concerning the response to various therapies for different subtypes of breast cancer through PET. We start by summarizing studies that investigate the validation of PET/CT for the assessment of the response to therapy in breast cancer; then, we present studies that compare PET imaging (including PET devices dedicated to the breast) with CT and MRI, focusing on the identification of the most useful parameters obtainable from PET/CT. We also focus on novel non-FDG radiotracers, as they allow for the acquisition of information on specific aspects of the new therapies.
Collapse
Affiliation(s)
- Luigi Castorina
- Nuclear Medicine Outpatient Unit, REM Radiotherapy Srl, Via Penninanzzo 11, 95029 Viagrande, Italy;
| | - Alessio Danilo Comis
- Nuclear Medicine Outpatient Unit, REM Radiotherapy Srl, Via Penninanzzo 11, 95029 Viagrande, Italy;
| | - Angela Prestifilippo
- Department of Oncology, IOM Mediterranean Oncology Institute, Via Penninanzzo 7, 95029 Viagrande, Italy; (A.P.); (D.G.)
| | - Natale Quartuccio
- Nuclear Medicine Unit, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy;
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41124 Modena, Italy;
| | - Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy;
| | - Serena Castorina
- Nuclear Medicine Unit, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, 95123 Catania, Italy
| | - Dario Giuffrida
- Department of Oncology, IOM Mediterranean Oncology Institute, Via Penninanzzo 7, 95029 Viagrande, Italy; (A.P.); (D.G.)
| |
Collapse
|
2
|
Dockx Y, Vangestel C, De Bruycker S, Van den Wyngaert T, Huizing M, Staelens S, Stroobants S. 18F-FDG and 18F-FLT Uptake Profiles for Breast Cancer Cell Lines Treated with Targeted PI3K/Akt/mTOR Therapies. Cancer Biother Radiopharm 2023; 38:51-61. [PMID: 36472460 DOI: 10.1089/cbr.2022.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: To evaluate 18F-fluoro-2-deoxy-glucose (18F-FDG) and 18F-fluorothymidine (18F-FLT) as early-response biomarkers for phosphoinositide-3-kinase/Akt/mammalian-target-of-rapamycin (PI3K/Akt/mTOR) inhibition in breast cancer (BC) models. Materials and Methods: Two human epidermal growth factor receptor 2 (HER2)-positive (trastuzumab-sensitive SKBR3; trastuzumab-resistant JIMT1) and one triple-negative BC cell line (MDA-MB-231, trastuzumab, and everolimus resistant) were treated with trastuzumab (HER2 antagonist), PIK90 (PI3K inhibitor), or everolimus (mTOR inhibitor). Radiotracer uptake was measured before, 24, and 72 h after drug exposure and correlated with changes in cell number, glucose transporter 1 (GLUT1), cell cycle phase, and downstream signaling activation. Results: In responsive cells, cell number correlated with 18F-FLT at 24 h and 18F-FDG at 72 h of drug exposure, except in JIMT1 treated with everolimus, where both radiotracers failed to detect response owing to a temporary increase in tracer uptake. This flare can be caused by reflex activation of Akt combined with a hyperactive insulin-like growth factor I receptor (IGF-1R) signaling, resulting in increased trafficking of GLUTs to the cell membrane (18F-FDG) and enhanced DNA repair (18F-FLT). In resistant cells, no major changes were observed, although a nonsignificant flair for both tracers was observed in JIMT1 treated with trastuzumab. Conclusion: 18F-FLT positron emission tomography (PET) detects response to PI3K-targeting therapy earlier than 18F-FDG PET in BC cells. However, therapy response can be underestimated after trastuzumab and everolimus owing to negative feedback loop and crosstalk between pathways.
Collapse
Affiliation(s)
- Yanina Dockx
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sven De Bruycker
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium.,Department of Science and Technology, AP University of Applied Sciences and Arts Antwerp, Antwerp, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Manon Huizing
- Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
3
|
Lu Y, Massicano AVF, Gallegos CA, Heinzman KA, Parish SW, Warram JM, Sorace AG. Evaluating the Accuracy of FUCCI Cell Cycle In Vivo Fluorescent Imaging to Assess Tumor Proliferation in Preclinical Oncology Models. Mol Imaging Biol 2022; 24:898-908. [PMID: 35650411 DOI: 10.1007/s11307-022-01739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE The primary goal of this study is to evaluate the accuracy of the fluorescence ubiquitination cell cycle indicator (FUCCI) system with fluorescence in vivo imaging compared to 3'-deoxy-3'-[18F]fluorothymidine ([18F]-FLT) positron emission tomography (PET)/computed tomography (CT) and biological validation through histology. Imaging with [18F]-FLT PET/CT can be used to noninvasively assess cancer cell proliferation and has been utilized in both preclinical and clinical studies. However, a cost-effective and straightforward method for in vivo, cell cycle targeted cancer drug screening is needed prior to moving towards translational imaging methods such as PET/CT. PROCEDURES In this study, fluorescent MDA-MB-231-FUCCI tumor growth was monitored weekly with caliper measurements and fluorescent imaging. Seven weeks post-injection, [18F]-FLT PET/CT was performed with a preclinical PET/CT, and tumors samples were harvested for histological analysis. RESULTS RFP fluorescent signal significantly correlated with tumor volume (r = 0.8153, p < 0.0001). Cell proliferation measured by GFP fluorescent imaging was correlated with tumor growth rate (r = 0.6497, p < 0.001). Also, GFP+ cells and [18F]-FLT regions of high uptake were both spatially located in the tumor borders, indicating that the FUCCI-IVIS method may provide an accurate assessment of tumor heterogeneity of cell proliferation. The quantification of total GFP signal was correlated with the sum of tumor [18F]-FLT standard uptake value (SUV) (r = 0.5361, p = 0.0724). Finally, histological analysis confirmed viable cells in the tumor and the correlation of GFP + and Ki67 + cells (r = 0.6368, p = 0.0477). CONCLUSION Fluorescent imaging of the cell cycle provides a noninvasive accurate depiction of tumor progression and response to therapy, which may benefit in vivo testing of novel cancer therapeutics that target the cell cycle.
Collapse
Affiliation(s)
- Yun Lu
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35233, USA
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Adriana V F Massicano
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35233, USA
| | - Carlos A Gallegos
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Katherine A Heinzman
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Sean W Parish
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jason M Warram
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35233, USA.
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
4
|
Urso L, Quartuccio N, Caracciolo M, Evangelista L, Schirone A, Frassoldati A, Arnone G, Panareo S, Bartolomei M. Impact on the long-term prognosis of FDG PET/CT in luminal-A and luminal-B breast cancer. Nucl Med Commun 2022; 43:212-219. [PMID: 35022378 PMCID: PMC10876173 DOI: 10.1097/mnm.0000000000001500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of the present study was to explore the prognostic role of 2- deoxy-2-[18F]fluoro-D-glucose PET (FDG PET)/CT in recurrent luminal A and luminal B breast cancer. MATERIALS AND METHODS From two institutional databases, we retrospectively retrieved data about breast cancer patients undergoing FDG PET/CT between 2011 and 2018 for the assessment of recurrency. Molecular subtypes of breast cancer were defined based on the expression of estrogen, progesterone, human epidermal growth factor receptor 2 (HER2)-b receptors and proliferation index. Overall survival (OS, intended as the time from PET/CT and the time of death) was registered for each patient, by checking the medical charts. Parametric and survival analyses were computed. RESULTS Data of 179 patients were retrieved. Sixty-three patients had luminal A, 88 luminal B and 28 luminal B/He breast cancer. At the time of PET/CT scan, cancer antigen (CA) 15.3 levels was within the normal range in 119 patients, whereas it was increased in 60 patients. FDG PET/CT results were suggestive for disease recurrence in 114 (63.7%) patients. The median time lapse from the FDG PET/CT scan to the last clinical follow-up visit was 51 months (1-192 months). Patients with evidence of a PET/CT scan suggestive for disease recurrence showed a significantly shorter OS (P < 0.001) compared to patients with no PET/CT evidence of recurrence, in each subset of luminal breast cancer. Moreover, PET/CT was able to stratify the prognosis of patients independently from the level of tumor marker. CONCLUSION These data suggest that FDG PET/CT may be an attractive prognostic tool in recurrent breast cancer. Our study supports its prognostic role both in luminal A and B-type molecular subtypes, regardless of the CA 15.3 levels.
Collapse
Affiliation(s)
- Luca Urso
- Oncological Medical and Specialists Department, Nuclear Medicine Unit, University Hospital of Ferrara, Ferrara
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, Palermo
| | - Matteo Caracciolo
- Oncological Medical and Specialists Department, Nuclear Medicine Unit, University Hospital of Ferrara, Ferrara
| | - Laura Evangelista
- Department of Medicine DIMED, Nuclear Medicine Unit, University of Padova, Padova
| | - Alessio Schirone
- Oncological Medical and Specialists Department, Oncology Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Antonio Frassoldati
- Oncological Medical and Specialists Department, Oncology Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Gaspare Arnone
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, Palermo
| | - Stefano Panareo
- Oncological Medical and Specialists Department, Nuclear Medicine Unit, University Hospital of Ferrara, Ferrara
| | - Mirco Bartolomei
- Oncological Medical and Specialists Department, Nuclear Medicine Unit, University Hospital of Ferrara, Ferrara
| |
Collapse
|
5
|
Jouberton E, Schmitt S, Maisonial-Besset A, Chautard E, Penault-Llorca F, Cachin F. Interest and Limits of [18F]ML-10 PET Imaging for Early Detection of Response to Conventional Chemotherapy. Front Oncol 2021; 11:789769. [PMID: 34988022 PMCID: PMC8722713 DOI: 10.3389/fonc.2021.789769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
One of the current challenges in oncology is to develop imaging tools to early detect the response to conventional chemotherapy and adjust treatment strategies when necessary. Several studies evaluating PET imaging with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) as a predictive tool of therapeutic response highlighted its insufficient specificity and sensitivity. The [18F]FDG uptake reflects only tumor metabolic activity and not treatment-induced cell death, which seems to be relevant for therapeutic evaluation. Therefore, to evaluate this parameter in vivo, several cell death radiotracers have been developed in the last years. However, few of them have reached the clinical trials. This systematic review focuses on the use of [18F]ML-10 (2-(5-[18F]fluoropentyl)-2-methylmalonic acid) as radiotracer of apoptosis and especially as a measure of tumor response to treatment. A comprehensive literature review concerning the preclinical and clinical investigations conducted with [18F]ML-10 was performed. The abilities and applications of this radiotracer as well as its clinical relevance and limitations were discussed. Most studies highlighted a good ability of the radiotracer to target apoptotic cells. However, the increase in apoptosis during treatment did not correlate with the radiotracer tumoral uptake, even using more advanced image analysis (voxel-based analysis). [18F]ML-10 PET imaging does not meet current clinical expectations for early detection of the therapeutic response to conventional chemotherapy. This review has pointed out the challenges of applying various apoptosis imaging strategies in clinical trials, the current methodologies available for image analysis and the future of molecular imaging to assess this therapeutic response.
Collapse
Affiliation(s)
- Elodie Jouberton
- Service de Médecine Nucléaire, Centre Jean PERRIN, Clermont-Ferrand, France
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
- *Correspondence: Elodie Jouberton,
| | - Sébastien Schmitt
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
| | - Aurélie Maisonial-Besset
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
| | - Emmanuel Chautard
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
- Service de Pathologie, Centre Jean PERRIN, Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
- Service de Pathologie, Centre Jean PERRIN, Clermont-Ferrand, France
| | - Florent Cachin
- Service de Médecine Nucléaire, Centre Jean PERRIN, Clermont-Ferrand, France
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
| |
Collapse
|
6
|
Liang K, Abt ER, Le TM, Cho A, Dann AM, Cui J, Li L, Rashid K, Creech AL, Wei L, Ghukasyan R, Rosser EW, Wu N, Carlucci G, Czernin J, Donahue TR, Radu CG. STING-driven interferon signaling triggers metabolic alterations in pancreas cancer cells visualized by [ 18F]FLT PET imaging. Proc Natl Acad Sci U S A 2021; 118:e2105390118. [PMID: 34480004 PMCID: PMC8433573 DOI: 10.1073/pnas.2105390118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/26/2021] [Indexed: 01/19/2023] Open
Abstract
Type I interferons (IFNs) are critical effectors of emerging cancer immunotherapies designed to activate pattern recognition receptors (PRRs). A challenge in the clinical translation of these agents is the lack of noninvasive pharmacodynamic biomarkers that indicate increased intratumoral IFN signaling following PRR activation. Positron emission tomography (PET) imaging enables the visualization of tissue metabolic activity, but whether IFN signaling-induced alterations in tumor cell metabolism can be detected using PET has not been investigated. We found that IFN signaling augments pancreatic ductal adenocarcinoma (PDAC) cell nucleotide metabolism via transcriptional induction of metabolism-associated genes including thymidine phosphorylase (TYMP). TYMP catalyzes the first step in the catabolism of thymidine, which competitively inhibits intratumoral accumulation of the nucleoside analog PET probe 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT). Accordingly, IFN treatment up-regulates cancer cell [18F]FLT uptake in the presence of thymidine, and this effect is dependent upon TYMP expression. In vivo, genetic activation of stimulator of interferon genes (STING), a PRR highly expressed in PDAC, enhances the [18F]FLT avidity of xenograft tumors. Additionally, small molecule STING agonists trigger IFN signaling-dependent TYMP expression in PDAC cells and increase tumor [18F]FLT uptake in vivo following systemic treatment. These findings indicate that [18F]FLT accumulation in tumors is sensitive to IFN signaling and that [18F]FLT PET may serve as a pharmacodynamic biomarker for STING agonist-based therapies in PDAC and possibly other malignancies characterized by elevated STING expression.
Collapse
Affiliation(s)
- Keke Liang
- Department of Surgery, University of California, Los Angeles, CA 90095
- Department of General Surgery/Pancreatic and Thyroid Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Evan R Abt
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Theranostics Division, University of California, Los Angeles, CA 90095
| | - Thuc M Le
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Theranostics Division, University of California, Los Angeles, CA 90095
| | - Arthur Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Amanda M Dann
- Department of Surgery, University of California, Los Angeles, CA 90095
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Jing Cui
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430022, China
| | - Luyi Li
- Department of Surgery, University of California, Los Angeles, CA 90095
| | - Khalid Rashid
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Theranostics Division, University of California, Los Angeles, CA 90095
| | - Amanda L Creech
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Theranostics Division, University of California, Los Angeles, CA 90095
| | - Liu Wei
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Theranostics Division, University of California, Los Angeles, CA 90095
| | - Razmik Ghukasyan
- Department of Surgery, University of California, Los Angeles, CA 90095
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Ethan W Rosser
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Theranostics Division, University of California, Los Angeles, CA 90095
| | - Nanping Wu
- Department of Surgery, University of California, Los Angeles, CA 90095
| | - Giuseppe Carlucci
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Theranostics Division, University of California, Los Angeles, CA 90095
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Theranostics Division, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| | - Timothy R Donahue
- Department of Surgery, University of California, Los Angeles, CA 90095;
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Theranostics Division, University of California, Los Angeles, CA 90095
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095;
- Ahmanson Translational Theranostics Division, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| |
Collapse
|
7
|
Romine PE, Peterson LM, Kurland BF, Byrd DW, Novakova-Jiresova A, Muzi M, Specht JM, Doot RK, Link JM, Krohn KA, Kinahan PE, Mankoff DA, Linden HM. 18F-fluorodeoxyglucose (FDG) PET or 18F-fluorothymidine (FLT) PET to assess early response to aromatase inhibitors (AI) in women with ER+ operable breast cancer in a window-of-opportunity study. Breast Cancer Res 2021; 23:88. [PMID: 34425871 PMCID: PMC8381552 DOI: 10.1186/s13058-021-01464-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE This study evaluated the ability of 18F-Fluorodeoxyglucose (FDG) and 18F-Fluorothymidine (FLT) imaging with positron emission tomography (PET) to measure early response to endocrine therapy from baseline to just prior to surgical resection in estrogen receptor positive (ER+) breast tumors. METHODS In two separate studies, women with early stage ER+ breast cancer underwent either paired FDG-PET (n = 22) or FLT-PET (n = 27) scans prior to endocrine therapy and again in the pre-operative setting. Tissue samples for Ki-67 were taken for all patients both prior to treatment and at the time of surgery. RESULTS FDG maximum standardized uptake value (SUVmax) declined in 19 of 22 lesions (mean 17% (range -45 to 28%)). FLT SUVmax declined in 24 of 27 lesions (mean 26% (range -77 to 7%)). The Ki-67 index declined in both studies, from pre-therapy (mean 23% (range 1 to 73%)) to surgery [mean 8% (range < 1 to 41%)]. Pre- and post-therapy PET measures showed strong rank-order agreement with Ki-67 percentages for both tracers; however, the percent change in FDG or FLT SUVmax did not demonstrate a strong correlation with Ki-67 index change or Ki-67 at time of surgery. CONCLUSIONS A window-of-opportunity approach using PET imaging to assess early response of breast cancer therapy is feasible. FDG and FLT-PET imaging following a short course of neoadjuvant endocrine therapy demonstrated measurable changes in SUVmax in early stage ER+ positive breast cancers. The percentage change in FDG and FLT-PET uptake did not correlate with changes in Ki-67; post-therapy SUVmax for both tracers was significantly associated with post-therapy Ki-67, an established predictor of endocrine therapy response.
Collapse
Affiliation(s)
- Perrin E. Romine
- grid.34477.330000000122986657Division of Medical Oncology, University of Washington/Seattle Cancer Care Alliance, 1144 Eastlake (Mail Stop LG-200), Seattle, WA 98109-1023 USA
| | - Lanell M. Peterson
- grid.34477.330000000122986657Division of Medical Oncology, University of Washington/Seattle Cancer Care Alliance, 1144 Eastlake (Mail Stop LG-200), Seattle, WA 98109-1023 USA
| | - Brenda F. Kurland
- grid.21925.3d0000 0004 1936 9000University of Pittsburgh, Pittsburgh, PA USA
| | - Darrin W. Byrd
- grid.34477.330000000122986657Department of Radiology, University of Washington, Seattle, WA USA
| | - Alena Novakova-Jiresova
- grid.4491.80000 0004 1937 116XDepartment of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Mark Muzi
- grid.34477.330000000122986657Department of Radiology, University of Washington, Seattle, WA USA
| | - Jennifer M. Specht
- grid.34477.330000000122986657Division of Medical Oncology, University of Washington/Seattle Cancer Care Alliance, 1144 Eastlake (Mail Stop LG-200), Seattle, WA 98109-1023 USA
| | - Robert K. Doot
- grid.25879.310000 0004 1936 8972Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| | - Jeanne M. Link
- grid.5288.70000 0000 9758 5690Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR USA
| | - Kenneth A. Krohn
- grid.5288.70000 0000 9758 5690Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR USA
| | - Paul E. Kinahan
- grid.34477.330000000122986657Department of Radiology, University of Washington, Seattle, WA USA
| | - David A. Mankoff
- grid.25879.310000 0004 1936 8972Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| | - Hannah M. Linden
- grid.34477.330000000122986657Division of Medical Oncology, University of Washington/Seattle Cancer Care Alliance, 1144 Eastlake (Mail Stop LG-200), Seattle, WA 98109-1023 USA
| |
Collapse
|
8
|
Sorace AG, Elkassem AA, Galgano SJ, Lapi SE, Larimer BM, Partridge SC, Quarles CC, Reeves K, Napier TS, Song PN, Yankeelov TE, Woodard S, Smith AD. Imaging for Response Assessment in Cancer Clinical Trials. Semin Nucl Med 2020; 50:488-504. [PMID: 33059819 PMCID: PMC7573201 DOI: 10.1053/j.semnuclmed.2020.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of biomarkers is integral to the routine management of cancer patients, including diagnosis of disease, clinical staging and response to therapeutic intervention. Advanced imaging metrics with computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) are used to assess response during new drug development and in cancer research for predictive metrics of response. Key components and challenges to identifying an appropriate imaging biomarker are selection of integral vs integrated biomarkers, choosing an appropriate endpoint and modality, and standardization of the imaging biomarkers for cooperative and multicenter trials. Imaging biomarkers lean on the original proposed quantified metrics derived from imaging such as tumor size or longest dimension, with the most commonly implemented metrics in clinical trials coming from the Response Evaluation Criteria in Solid Tumors (RECIST) criteria, and then adapted versions such as immune-RECIST (iRECIST) and Positron Emission Tomography Response Criteria in Solid Tumors (PERCIST) for immunotherapy response and PET imaging, respectively. There have been many widely adopted biomarkers in clinical trials derived from MRI including metrics that describe cellularity and vascularity from diffusion-weighted (DW)-MRI apparent diffusion coefficient (ADC) and Dynamic Susceptibility Contrast (DSC) or dynamic contrast enhanced (DCE)-MRI (Ktrans, relative cerebral blood volume (rCBV)), respectively. Furthermore, Fluorodexoyglucose (FDG), fluorothymidine (FLT), and fluoromisonidazole (FMISO)-PET imaging, which describe molecular markers of glucose metabolism, proliferation and hypoxia have been implemented into various cancer types to assess therapeutic response to a wide variety of targeted- and chemotherapies. Recently, there have been many functional and molecular novel imaging biomarkers that are being developed that are rapidly being integrated into clinical trials (with anticipation of being implemented into clinical workflow in the future), such as artificial intelligence (AI) and machine learning computational strategies, antibody and peptide specific molecular imaging, and advanced diffusion MRI. These include prostate-specific membrane antigen (PSMA) and trastuzumab-PET, vascular tumor burden extracted from contrast-enhanced CT, diffusion kurtosis imaging, and CD8 or Granzyme B PET imaging. Further excitement surrounds theranostic procedures such as the combination of 68Ga/111In- and 177Lu-DOTATATE to use integral biomarkers to direct care and personalize therapy. However, there are many challenges in the implementation of imaging biomarkers that remains, including understand the accuracy, repeatability and reproducibility of both acquisition and analysis of these imaging biomarkers. Despite the challenges associated with the biological and technical validation of novel imaging biomarkers, a distinct roadmap has been created that is being implemented into many clinical trials to advance the development and implementation to create specific and sensitive novel imaging biomarkers of therapeutic response to continue to transform medical oncology.
Collapse
Affiliation(s)
- Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL; Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL.
| | - Asser A Elkassem
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Samuel J Galgano
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL; Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL
| | - Benjamin M Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | | | - C Chad Quarles
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ
| | - Kirsten Reeves
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL; Cancer Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Tiara S Napier
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL; Cancer Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Patrick N Song
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX; Department of Diagnostic Medicine, University of Texas at Austin, Austin, TX; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX
| | - Stefanie Woodard
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Andrew D Smith
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|