1
|
Carrasco K, Tomalá L, Ramírez Meza E, Meza Bolaños D, Ramírez Montalvan W. Computational Techniques in PET/CT Image Processing for Breast Cancer: A Systematic Mapping Review. ACM COMPUTING SURVEYS 2024; 56:1-38. [DOI: 10.1145/3648359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 01/31/2024] [Indexed: 01/06/2025]
Abstract
The problem arises from the lack of sufficient and comprehensive information about the necessary computer techniques. These techniques are crucial for developing information systems that assist doctors in diagnosing breast cancer, especially those related to positron emission tomography and computed tomography (PET/CT). Despite global efforts in breast cancer prevention and control, the scarcity of literature poses an obstacle to a complete understanding in this area of interest. The methodologies studied were systematic mapping and systematic literature review. For each article, the journal, conference, year of publication, dataset, breast cancer characteristics, PET/CT processing techniques, metrics and diagnostic yield results were identified. Sixty-four articles were analyzed, 44 (68.75%) belong to journals and 20 (31.25%) belong to the conference category. A total of 102 techniques were identified, which were distributed in preprocessing with 7 (6.86%), segmentation with 15 (14.71%), feature extraction with 15 (14.71%), and classification with 65 (63.73%). The techniques with the highest incidence identified in each stage are: Gaussian Filter, SLIC, Local Binary Pattern, and Support Vector Machine with 4, 2, 7, and 35 occurrences, respectively. Support Vector Machine is the predominant technique in the classification stage, due to the fact that Artificial Intelligence is emerging in medical image processing and health care to make expert systems increasingly intelligent and obtain favorable results.
Collapse
|
2
|
Papalia GF, Brigato P, Sisca L, Maltese G, Faiella E, Santucci D, Pantano F, Vincenzi B, Tonini G, Papalia R, Denaro V. Artificial Intelligence in Detection, Management, and Prognosis of Bone Metastasis: A Systematic Review. Cancers (Basel) 2024; 16:2700. [PMID: 39123427 PMCID: PMC11311270 DOI: 10.3390/cancers16152700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Metastasis commonly occur in the bone tissue. Artificial intelligence (AI) has become increasingly prevalent in the medical sector as support in decision-making, diagnosis, and treatment processes. The objective of this systematic review was to assess the reliability of AI systems in clinical, radiological, and pathological aspects of bone metastases. METHODS We included studies that evaluated the use of AI applications in patients affected by bone metastases. Two reviewers performed a digital search on 31 December 2023 on PubMed, Scopus, and Cochrane library and extracted authors, AI method, interest area, main modalities used, and main objectives from the included studies. RESULTS We included 59 studies that analyzed the contribution of computational intelligence in diagnosing or forecasting outcomes in patients with bone metastasis. Six studies were specific for spine metastasis. The study involved nuclear medicine (44.1%), clinical research (28.8%), radiology (20.4%), or molecular biology (6.8%). When a primary tumor was reported, prostate cancer was the most common, followed by lung, breast, and kidney. CONCLUSIONS Appropriately trained AI models may be very useful in merging information to achieve an overall improved diagnostic accuracy and treatment for metastasis in the bone. Nevertheless, there are still concerns with the use of AI systems in medical settings. Ethical considerations and legal issues must be addressed to facilitate the safe and regulated adoption of AI technologies. The limitations of the study comprise a stronger emphasis on early detection rather than tumor management and prognosis as well as a high heterogeneity for type of tumor, AI technology and radiological techniques, pathology, or laboratory samples involved.
Collapse
Affiliation(s)
- Giuseppe Francesco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Paolo Brigato
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Luisana Sisca
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Girolamo Maltese
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Eliodoro Faiella
- Department of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
- Research Unit of Radiology and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Domiziana Santucci
- Department of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Francesco Pantano
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
3
|
Zamani-Siahkali N, Mirshahvalad SA, Farbod A, Divband G, Pirich C, Veit-Haibach P, Cook G, Beheshti M. SPECT/CT, PET/CT, and PET/MRI for Response Assessment of Bone Metastases. Semin Nucl Med 2024; 54:356-370. [PMID: 38172001 DOI: 10.1053/j.semnuclmed.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Recent developments in hybrid SPECT/CT systems and the use of cadmium-zinc-telluride (CZT) detectors have improved the diagnostic accuracy of bone scintigraphy. These advancements have paved the way for novel quantitative approaches to accurate and reproducible treatment monitoring of bone metastases. PET/CT imaging using [18F]F-FDG and [18F]F-NaF have shown promising clinical utility in bone metastases assessment and monitoring response to therapy and prediction of treatment response in a broad range of malignancies. Additionally, specific tumor-targeting tracers like [99mTc]Tc-PSMA, [68Ga]Ga-PSMA, or [11C]C- or [18F]F-Choline revealed high diagnostic performance for early assessment and prognostication of bone metastases, particularly in prostate cancer. PET/MRI appears highly accurate imaging modality, but has associated limitations notably, limited availability, more complex logistics and high installation costs. Advances in artificial intelligence (Al) seem to improve the accuracy of imaging modalities and provide an assistant role in the evaluation of treatment response of bone metastases.
Collapse
Affiliation(s)
- Nazanin Zamani-Siahkali
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirshahvalad
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, Canada
| | - Abolfazl Farbod
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, Canada
| | - Gary Cook
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
4
|
Hossain A, Chowdhury SI. Breast Cancer Subtype Prediction Model Employing Artificial Neural Network and 18F-Fluorodeoxyglucose Positron Emission Tomography/ Computed Tomography. J Med Phys 2024; 49:181-188. [PMID: 39131430 PMCID: PMC11309150 DOI: 10.4103/jmp.jmp_181_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/17/2024] [Accepted: 04/14/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Although positron emission tomography/computed tomography (PET/CT) is a common tool for measuring breast cancer (BC), subtypes are not automatically classified by it. Therefore, the purpose of this research is to use an artificial neural network (ANN) to evaluate the clinical subtypes of BC based on the value of the tumor marker. Materials and Methods In our nuclear medical facility, 122 BC patients (training and testing) had 18F-fluoro-D-glucose (18F-FDG) PET/CT to identify the various subtypes of the disease. 18F-FDG-18 injections were administered to the patients before the scanning process. We carried out the scan according to protocol. Based on the tumor marker value, the ANN's output layer uses the Softmax function with cross-entropy loss to detect different subtypes of BC. Results With an accuracy of 95.77%, the result illustrates the ANN model for K-fold cross-validation. The mean values of specificity and sensitivity were 0.955 and 0.958, respectively. The area under the curve on average was 0.985. Conclusion Subtypes of BC may be categorized using the suggested approach. The PET/CT may be updated to diagnose BC subtypes using the appropriate tumor maker value when the suggested model is clinically implemented.
Collapse
Affiliation(s)
- Alamgir Hossain
- Department of Physics, University of Rajshahi, Rajshahi-6205, Rajshahi, Bangladesh
| | - Shariful Islam Chowdhury
- Institute of Nuclear Medicine and Allied Sciences, Bangladesh Atomic Energy Commission, Rajshahi, Bangladesh
| |
Collapse
|
5
|
Shibutani T, Konishi T, Ichikawa H, Onoguchi M, Yoneyama H, Ito T, Okuda K, Nakajima K. Detectability of cold tumors by xSPECT bone technology compared with hot tumors: a supine phantom study. Phys Eng Sci Med 2024; 47:287-294. [PMID: 38117462 DOI: 10.1007/s13246-023-01364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Detecting cold as well as hot tumors is vital for interpreting bone tumors on single-photon emission computed tomography (SPECT) images. This study aimed to visually and quantitatively demonstrate the detectability of cold tumors using xSPECT technology compared with that of hot tumors in the phantom study. Five tumors of different sizes and normal bone contained a mixture of 99mTc and K2HPO4 in a spine phantom. We acquired SPECT data using an xSPECT protocol and transverse images were reconstructed using xSPECT Bone (xB) and xSPECT Quant (xQ). Mean standardized uptake values (SUVmean) in volumes of interest (VOI) were calculated. Recovery coefficients (RCs) for each tumor site were calculated with reference to radioactive concentrations. The SUVmeans of the whole vertebral body for hot tumor bone image in cortical bone phantom reconstructed by with xB and xQ were 5.77 and 4.86 respectively. The SUVmean of xB was similar to the true value. The SUVmeans for xB and xQ reconstructed images of cold tumors were both approximately 0.16. The RC of the cold tumor on xQ images increased as the tumor diameter decreased, whereas that of xB remained almost constant regardless of the tumor diameter. In conclusion, the quantitative accuracy of detecting hot and cold tumors was higher in the xB image than in the xQ image. Moreover, the visual detectability of cold tumors was also excellent in xB images.
Collapse
Affiliation(s)
- Takayuki Shibutani
- Department of Quantum Medical Technology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Takahiro Konishi
- Department of Radiological Technology, Kanazawa University Hospital, Kanazawa, Japan
| | - Hajime Ichikawa
- Department of Radiology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Masahisa Onoguchi
- Department of Quantum Medical Technology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroto Yoneyama
- Department of Radiological Technology, Kanazawa University Hospital, Kanazawa, Japan
| | - Toshimune Ito
- Department of Radiological, Technology, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Okuda
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| | - Kenichi Nakajima
- Department of Functional Imaging and Artificial Intelligence, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Caloro E, Gnocchi G, Quarrella C, Ce M, Carrafiello G, Cellina M. Artificial Intelligence in Bone Metastasis Imaging: Recent Progresses from Diagnosis to Treatment - A Narrative Review. Crit Rev Oncog 2024; 29:77-90. [PMID: 38505883 DOI: 10.1615/critrevoncog.2023050470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The introduction of artificial intelligence (AI) represents an actual revolution in the radiological field, including bone lesion imaging. Bone lesions are often detected both in healthy and oncological patients and the differential diagnosis can be challenging but decisive, because it affects the diagnostic and therapeutic process, especially in case of metastases. Several studies have already demonstrated how the integration of AI-based tools in the current clinical workflow could bring benefits to patients and to healthcare workers. AI technologies could help radiologists in early bone metastases detection, increasing the diagnostic accuracy and reducing the overdiagnosis and the number of unnecessary deeper investigations. In addition, radiomics and radiogenomics approaches could go beyond the qualitative features, visible to the human eyes, extrapolating cancer genomic and behavior information from imaging, in order to plan a targeted and personalized treatment. In this article, we want to provide a comprehensive summary of the most promising AI applications in bone metastasis imaging and their role from diagnosis to treatment and prognosis, including the analysis of future challenges and new perspectives.
Collapse
Affiliation(s)
- Elena Caloro
- Università degli studi di Milano, via Festa del Perdono, 7, 20122 Milan, Italy
| | - Giulia Gnocchi
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Cettina Quarrella
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Maurizio Ce
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Gianpaolo Carrafiello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy; Radiology Department, Fondazione IRCCS Cà Granda, Policlinico di Milano Ospedale Maggiore, Università di Milano, 20122 Milan, Italy
| | - Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121, Milan, Italy
| |
Collapse
|
7
|
Kao YS, Huang CP, Tsai WW, Yang J. A systematic review for using deep learning in bone scan classification. Clin Transl Imaging 2023. [DOI: 10.1007/s40336-023-00539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Chen Z, Chen X, Wang R. Application of SPECT and PET / CT with computer-aided diagnosis in bone metastasis of prostate cancer: a review. Cancer Imaging 2022; 22:18. [PMID: 35428360 PMCID: PMC9013072 DOI: 10.1186/s40644-022-00456-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/04/2022] [Indexed: 01/05/2023] Open
Abstract
Bone metastasis has a significant influence on the prognosis of prostate cancer(PCa) patients. In this review, we discussed the current application of PCa bone metastasis diagnosis with single-photon emission computed tomography (SPECT) and positron emission tomography/computed tomography (PET/CT) computer-aided diagnosis(CAD) systems. A literature search identified articles concentrated on PCa bone metastasis and PET/CT or SPECT CAD systems using the PubMed database. We summarized the previous studies focused on CAD systems and manual quantitative markers calculation, and the coincidence rate was acceptable. We also analyzed the quantification methods, advantages, and disadvantages of CAD systems. CAD systems can detect abnormal lesions of PCa patients' 99mTc-MDP-SPECT, 18F-FDG-PET/CT, 18F-NaF-PET/CT, and 68 Ga-PSMA PET/CT images automated or semi-automated. CAD systems can also calculate the quantitative markers, which can quantify PCa patients' whole-body bone metastasis tumor burden accurately and quickly and give a standardized and objective result. SPECT and PET/CT CAD systems are potential tools to monitor and quantify bone metastasis lesions of PCa patients simply and accurately, the future clinical application of CAD systems in diagnosing PCa bone metastasis lesions is necessary and feasible.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng District, Beijing, 100034 China
| | - Xueqi Chen
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng District, Beijing, 100034 China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng District, Beijing, 100034 China
- Department of Nuclear Medicine, Peking University International Hospital, Changping District, Beijing, 102206 China
| |
Collapse
|
9
|
Novel diagnostic model for bone metastases in renal cell carcinoma patients based on bone scintigraphy analyzed by computer-aided diagnosis software and bone turnover markers. Int J Clin Oncol 2022; 27:774-780. [PMID: 35119579 PMCID: PMC8956553 DOI: 10.1007/s10147-021-02107-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022]
Abstract
Background Computer-assisted diagnosis (CAD) systems for bone scans have been introduced as clinical quality assurance tools, but few studies have reported on its utility for renal cell carcinoma (RCC) patients. The aim of this study was to assess the diagnostic validity of the CAD system for bone scans and to construct a novel diagnostic system for bone metastases in RCC patients. Methods We evaluated bone scan images of 300 RCC patients. Artificial neural network (ANN) values, which represent the probability of abnormality, were calculated by BONENAVI, the CAD software for bone scans. By analyzing ANN values, we assessed the diagnostic validity of BONENAVI. Next, we selected 108 patients who underwent measurements of bone turnover markers and assessed the combined diagnostic validity of BONENAVI and bone turnover markers. Results Forty-three out of 300 RCC patients had bone metastases. The AUC of ANN values was 0.764 and the optimum sensitivity and specificity were 83.7 and 62.7%. By logistic analysis of 108 cases, we found that ICTP, a bone resorption marker, could be a diagnostic marker. The AUC of ICTP was 0.776 and the optimum sensitivity and specificity were 57.1 and 86.8%. Subsequently, we developed a novel diagnostic model based on ANN values and ICTP. Using this model, the AUC was 0.849 and the optimum sensitivity and specificity were 76.2 and 80.7%. Conclusion By combining the high sensitivity provided by BONENAVI and the high specificity provided by ICTP, we constructed a novel, high-accuracy diagnostic model for bone metastases in RCC patients.
Collapse
|
10
|
Li MD, Ahmed SR, Choy E, Lozano-Calderon SA, Kalpathy-Cramer J, Chang CY. Artificial intelligence applied to musculoskeletal oncology: a systematic review. Skeletal Radiol 2022; 51:245-256. [PMID: 34013447 DOI: 10.1007/s00256-021-03820-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 02/02/2023]
Abstract
Developments in artificial intelligence have the potential to improve the care of patients with musculoskeletal tumors. We performed a systematic review of the published scientific literature to identify the current state of the art of artificial intelligence applied to musculoskeletal oncology, including both primary and metastatic tumors, and across the radiology, nuclear medicine, pathology, clinical research, and molecular biology literature. Through this search, we identified 252 primary research articles, of which 58 used deep learning and 194 used other machine learning techniques. Articles involving deep learning have mostly involved bone scintigraphy, histopathology, and radiologic imaging. Articles involving other machine learning techniques have mostly involved transcriptomic analyses, radiomics, and clinical outcome prediction models using medical records. These articles predominantly present proof-of-concept work, other than the automated bone scan index for bone metastasis quantification, which has translated to clinical workflows in some regions. We systematically review and discuss this literature, highlight opportunities for multidisciplinary collaboration, and identify potentially clinically useful topics with a relative paucity of research attention. Musculoskeletal oncology is an inherently multidisciplinary field, and future research will need to integrate and synthesize noisy siloed data from across clinical, imaging, and molecular datasets. Building the data infrastructure for collaboration will help to accelerate progress towards making artificial intelligence truly useful in musculoskeletal oncology.
Collapse
Affiliation(s)
- Matthew D Li
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Syed Rakin Ahmed
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Medical School, Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA.,Geisel School of Medicine At Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Edwin Choy
- Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Santiago A Lozano-Calderon
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jayashree Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Connie Y Chang
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Artificial Intelligence Algorithm-Based Ultrasound Image Segmentation Technology in the Diagnosis of Breast Cancer Axillary Lymph Node Metastasis. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:8830260. [PMID: 34367541 PMCID: PMC8339348 DOI: 10.1155/2021/8830260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023]
Abstract
This paper aimed to investigate the application of ultrasound image segmentation technology based on the back propagation neural network (BPNN) artificial intelligence algorithm in the diagnosis of breast cancer axillary lymph node metastasis, thereby providing a theoretical basis for clinical diagnosis. In this study, 90 breast cancer patients with axillary lymph node metastasis were selected as the research objects and rolled randomly into an experimental group and a control group. Besides, all of them were examined by ultrasound. The BPNN algorithm for the ultrasound image segmentation diagnosis method was applied to the patiens from the experimental group, while the control group was given routine ultrasound diagnosis. Thus, the value of this algorithm in ultrasonic diagnosis was compared and explored. The results showed that when the number of hidden layer nodes based on the BPNN artificial intelligence algorithm was 2, 3, 4, 5, 6, 7, and 8, the corresponding segmentation accuracy was 97.3%, 96.5%, 94.8%, 94.8%, and 94.1% in turn. Among them, the segmentation accuracy was the highest when the number of hidden layer nodes was 2. The correlation of independent variable bubble plot analysis showed that the presence or absence of capsules, the presence of crab feet or burrs in breast cancer lesions was critical influencing factors for the occurrence of axillary lymph node metastasis, and the standardized importance was 99.7% and 70.8%, respectively. Besides, the area under the two-dimensional receiver operating characteristic (ROC) curve of the BPNN artificial intelligence algorithm model classification was always greater than the area under the curve of manual segmentation, and the segmentation accuracy was 90.31%, 94.88%, 95.48%, 95.44%, and 97.65% in sequence. In addition, the segmentation specificity of different running times was higher than that of manual segmentation. In conclusion, the BPNN artificial intelligence algorithm had high accuracy, sensitivity, and specificity for ultrasound image segmentation, with a better segmentation effect. Therefore, it had a better diagnostic effect for breast cancer axillary lymph node metastasis.
Collapse
|
12
|
Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis. Sci Rep 2020; 10:17046. [PMID: 33046779 PMCID: PMC7550561 DOI: 10.1038/s41598-020-74135-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/24/2020] [Indexed: 02/05/2023] Open
Abstract
Bone scintigraphy (BS) is one of the most frequently utilized diagnostic techniques in detecting cancer bone metastasis, and it occupies an enormous workload for nuclear medicine physicians. So, we aimed to architecture an automatic image interpreting system to assist physicians for diagnosis. We developed an artificial intelligence (AI) model based on a deep neural network with 12,222 cases of 99mTc-MDP bone scintigraphy and evaluated its diagnostic performance of bone metastasis. This AI model demonstrated considerable diagnostic performance, the areas under the curve (AUC) of receiver operating characteristic (ROC) was 0.988 for breast cancer, 0.955 for prostate cancer, 0.957 for lung cancer, and 0.971 for other cancers. Applying this AI model to a new dataset of 400 BS cases, it represented comparable performance to that of human physicians individually classifying bone metastasis. Further AI-consulted interpretation also improved human diagnostic sensitivity and accuracy. In total, this AI model performed a valuable benefit for nuclear medicine physicians in timely and accurate evaluation of cancer bone metastasis.
Collapse
|