1
|
Bhidayasiri R. The grand challenge at the frontiers of neurotechnology and its emerging clinical applications. Front Neurol 2024; 15:1314477. [PMID: 38299015 PMCID: PMC10827995 DOI: 10.3389/fneur.2024.1314477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Affiliation(s)
- Roongroj Bhidayasiri
- Department of Medicine, Faculty of Medicine, Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
2
|
Boulingre M, Portillo-Lara R, Green RA. Biohybrid neural interfaces: improving the biological integration of neural implants. Chem Commun (Camb) 2023; 59:14745-14758. [PMID: 37991846 PMCID: PMC10720954 DOI: 10.1039/d3cc05006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Implantable neural interfaces (NIs) have emerged in the clinic as outstanding tools for the management of a variety of neurological conditions caused by trauma or disease. However, the foreign body reaction triggered upon implantation remains one of the major challenges hindering the safety and longevity of NIs. The integration of tools and principles from biomaterial design and tissue engineering has been investigated as a promising strategy to develop NIs with enhanced functionality and performance. In this Feature Article, we highlight the main bioengineering approaches for the development of biohybrid NIs with an emphasis on relevant device design criteria. Technical and scientific challenges associated with the fabrication and functional assessment of technologies composed of both artificial and biological components are discussed. Lastly, we provide future perspectives related to engineering, regulatory, and neuroethical challenges to be addressed towards the realisation of the promise of biohybrid neurotechnology.
Collapse
Affiliation(s)
- Marjolaine Boulingre
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Roberto Portillo-Lara
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Rylie A Green
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| |
Collapse
|
3
|
Shen K, Chen O, Edmunds JL, Piech DK, Maharbiz MM. Translational opportunities and challenges of invasive electrodes for neural interfaces. Nat Biomed Eng 2023; 7:424-442. [PMID: 37081142 DOI: 10.1038/s41551-023-01021-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/15/2023] [Indexed: 04/22/2023]
Abstract
Invasive brain-machine interfaces can restore motor, sensory and cognitive functions. However, their clinical adoption has been hindered by the surgical risk of implantation and by suboptimal long-term reliability. In this Review, we highlight the opportunities and challenges of invasive technology for clinically relevant electrophysiology. Specifically, we discuss the characteristics of neural probes that are most likely to facilitate the clinical translation of invasive neural interfaces, describe the neural signals that can be acquired or produced by intracranial electrodes, the abiotic and biotic factors that contribute to their failure, and emerging neural-interface architectures.
Collapse
Affiliation(s)
- Konlin Shen
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Oliver Chen
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - Jordan L Edmunds
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - David K Piech
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Michel M Maharbiz
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
4
|
Valentine C. Health Implications of Virtual Architecture: An Interdisciplinary Exploration of the Transferability of Findings from Neuroarchitecture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2735. [PMID: 36768106 PMCID: PMC9915076 DOI: 10.3390/ijerph20032735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Virtual architecture has been increasingly relied on to evaluate the health impacts of physical architecture. In this health research, exposure to virtual architecture has been used as a proxy for exposure to physical architecture. Despite the growing body of research on the health implications of physical architecture, there is a paucity of research examining the long-term health impacts of prolonged exposure to virtual architecture. In response, this paper considers: what can proxy studies, which use virtual architecture to assess the physiological response to physical architecture, tell us about the impact of extended exposure to virtual architecture on human health? The paper goes on to suggest that the applicability of these findings to virtual architecture may be limited by certain confounding variables when virtual architecture is experienced for a prolonged period of time. This paper explores the potential impact of two of these confounding variables: multisensory integration and gravitational perception. This paper advises that these confounding variables are unique to extended virtual architecture exposure and may not be captured by proxy studies that aim to capture the impact of physical architecture on human health through acute exposure to virtual architecture. While proxy studies may be suitable for measuring some aspects of the impact of both physical and virtual architecture on human health, this paper argues that they may be insufficient to fully capture the unintended consequences of extended exposure to virtual architecture on human health. Therefore, in the face of the increasing use of virtual architectural environments, the author calls for the establishment of a subfield of neuroarchitectural health research that empirically examines the physiological impacts of extended exposure to virtual architecture in its own right.
Collapse
Affiliation(s)
- Cleo Valentine
- Department of Architecture, University of Cambridge, Cambridge CB2 1PX, UK
| |
Collapse
|
5
|
Díaz Soto JM, Borbón D. Neurorights vs. neuroprediction and lie detection: The imperative limits to criminal law. Front Psychol 2022; 13:1030439. [PMID: 36591076 PMCID: PMC9801636 DOI: 10.3389/fpsyg.2022.1030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- José Manuel Díaz Soto
- Department of Criminal Law and Criminology, Universidad Externado de Colombia, Bogotá, Colombia
| | - Diego Borbón
- NeuroRights Research Group, The Latin American Observatory of Human Rights and Enterprises, Universidad Externado de Colombia, Bogotá, Colombia,*Correspondence: Diego Borbón
| |
Collapse
|
6
|
van Velthoven EAM, van Stuijvenberg OC, Haselager DRE, Broekman M, Chen X, Roelfsema P, Bredenoord AL, Jongsma KR. Ethical implications of visual neuroprostheses-a systematic review. J Neural Eng 2022; 19. [PMID: 35475424 DOI: 10.1088/1741-2552/ac65b2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/08/2022] [Indexed: 11/12/2022]
Abstract
Objective. The aim of this review was to systematically identify the ethical implications of visual neuroprostheses.Approach. A systematic search was performed in both PubMed and Embase using a search string that combined synonyms for visual neuroprostheses, brain-computer interfaces (BCIs), cochlear implants (CIs), and ethics. We chose to include literature on BCIs and CIs, because of their ethically relavant similarities and functional parallels with visual neuroprostheses.Main results. We included 84 articles in total. Six focused specifically on visual prostheses. The other articles focused more broadly on neurotechnologies, on BCIs or CIs. We identified 169 ethical implications that have been categorized under seven main themes: (a) benefits for health and well-being; (b) harm and risk; (c) autonomy; (d) societal effects; (e) clinical research; (f) regulation and governance; and (g) involvement of experts, patients and the public.Significance. The development and clinical use of visual neuroprostheses is accompanied by ethical issues that should be considered early in the technological development process. Though there is ample literature on the ethical implications of other types of neuroprostheses, such as motor neuroprostheses and CIs, there is a significant gap in the literature regarding the ethical implications of visual neuroprostheses. Our findings can serve as a starting point for further research and normative analysis.
Collapse
Affiliation(s)
- E A M van Velthoven
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht, PO Box 85500, Utrecht, 3508 GA, The Netherlands
| | - O C van Stuijvenberg
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht, PO Box 85500, Utrecht, 3508 GA, The Netherlands
| | - D R E Haselager
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht, PO Box 85500, Utrecht, 3508 GA, The Netherlands
| | - M Broekman
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands.,Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands
| | - X Chen
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - P Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.,Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands.,Department of Psychiatry, Academic Medical Center, Amsterdam, The Netherlands
| | - A L Bredenoord
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - K R Jongsma
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht, PO Box 85500, Utrecht, 3508 GA, The Netherlands
| |
Collapse
|
7
|
Vėbraitė I, Hanein Y. Soft Devices for High-Resolution Neuro-Stimulation: The Interplay Between Low-Rigidity and Resolution. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:675744. [PMID: 35047928 PMCID: PMC8757739 DOI: 10.3389/fmedt.2021.675744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
The field of neurostimulation has evolved over the last few decades from a crude, low-resolution approach to a highly sophisticated methodology entailing the use of state-of-the-art technologies. Neurostimulation has been tested for a growing number of neurological applications, demonstrating great promise and attracting growing attention in both academia and industry. Despite tremendous progress, long-term stability of the implants, their large dimensions, their rigidity and the methods of their introduction and anchoring to sensitive neural tissue remain challenging. The purpose of this review is to provide a concise introduction to the field of high-resolution neurostimulation from a technological perspective and to focus on opportunities stemming from developments in materials sciences and engineering to reduce device rigidity while optimizing electrode small dimensions. We discuss how these factors may contribute to smaller, lighter, softer and higher electrode density devices.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Comparison of the In Vitro and In Vivo Electrochemical Performance of Bionic Electrodes. MICROMACHINES 2022; 13:mi13010103. [PMID: 35056268 PMCID: PMC8779563 DOI: 10.3390/mi13010103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
The electrochemical performance of platinum electrodes was assessed in vitro and in vivo to determine the impact of electrode implantation and the relevance of in vitro testing in predicting in vivo behaviour. A significant change in electrochemical response was seen after electrode polarisation. As a result, initial in vitro measurements were poor predictors of subsequent measurements performed in vitro or in vivo. Charge storage capacity and charge density measurements from initial voltammetric measurements were not correlated with subsequent measurements. Electrode implantation also affected the electrochemical impedance. The typically reported impedance at 1 kHz was a very poor predictor of electrode performance. Lower frequencies were significantly more dependent on electrode properties, while higher frequencies were dependent on solution properties. Stronger correlations in impedance at low frequencies were seen between in vitro and in vivo measurements after electrode activation had occurred. Implanting the electrode increased the resistance of the electrochemical circuit, with bone having a higher resistivity than soft tissue. In contrast, protein fouling and fibrous tissue formation had a minimal impact on electrochemical response. In vivo electrochemical measurements also typically use a quasi-reference electrode, may operate in a 2-electrode system, and suffer from uncompensated resistance. The impact of these experimental conditions on electrochemical performance and the relevance of in vitro electrode assessment is discussed. Recommended in vitro testing protocols for assessing bionic electrodes are presented.
Collapse
|
9
|
Vomero M, Schiavone G. Biomedical Microtechnologies Beyond Scholarly Impact. MICROMACHINES 2021; 12:mi12121471. [PMID: 34945320 PMCID: PMC8709221 DOI: 10.3390/mi12121471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
The recent tremendous advances in medical technology at the level of academic research have set high expectations for the clinical outcomes they promise to deliver. To the demise of patient hopes, however, the more disruptive and invasive a new technology is, the bigger the gap is separating the conceptualization of a medical device and its adoption into healthcare systems. When technology breakthroughs are reported in the biomedical scientific literature, news focus typically lies on medical implications rather than engineering progress, as the former are of higher appeal to a general readership. While successful therapy and diagnostics are indeed the ultimate goals, it is of equal importance to expose the engineering thinking needed to achieve such results and, critically, identify the challenges that still lie ahead. Here, we would like to provoke thoughts on the following questions, with particular focus on microfabricated medical devices: should research advancing the maturity and reliability of medical technology benefit from higher accessibility and visibility? How can the scientific community encourage and reward academic work on the overshadowed engineering aspects that will facilitate the evolution of laboratory samples into clinical devices?
Collapse
Affiliation(s)
- Maria Vomero
- BioEE Laboratory, Electrical Engineering Department, Columbia University, New York, NY 10027, USA;
| | - Giuseppe Schiavone
- Research Management & Innovation Directorate, King’s College London, Tower Wing, Guy’s Hospital, London SE1 9RT, UK
- Correspondence:
| |
Collapse
|
10
|
Devi M, Vomero M, Fuhrer E, Castagnola E, Gueli C, Nimbalkar S, Hirabayashi M, Kassegne S, Stieglitz T, Sharma S. Carbon-based neural electrodes: promises and challenges. J Neural Eng 2021; 18. [PMID: 34404037 DOI: 10.1088/1741-2552/ac1e45] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
Neural electrodes are primary functional elements of neuroelectronic devices designed to record neural activity based on electrochemical signals. These electrodes may also be utilized for electrically stimulating the neural cells, such that their response can be simultaneously recorded. In addition to being medically safe, the electrode material should be electrically conductive and electrochemically stable under harsh biological environments. Mechanical flexibility and conformability, resistance to crack formation and compatibility with common microfabrication techniques are equally desirable properties. Traditionally, (noble) metals have been the preferred for neural electrode applications due to their proven biosafety and a relatively high electrical conductivity. Carbon is a recent addition to this list, which is far superior in terms of its electrochemical stability and corrosion resistance. Carbon has also enabled 3D electrode fabrication as opposed to the thin-film based 2D structures. One of carbon's peculiar aspects is its availability in a wide range of allotropes with specialized properties that render it highly versatile. These variations, however, also make it difficult to understand carbon itself as a unique material, and thus, each allotrope is often regarded independently. Some carbon types have already shown promising results in bioelectronic medicine, while many others remain potential candidates. In this topical review, we first provide a broad overview of the neuroelectronic devices and the basic requirements of an electrode material. We subsequently discuss the carbon family of materials and their properties that are useful in neural applications. Examples of devices fabricated using bulk and nano carbon materials are reviewed and critically compared. We then summarize the challenges, future prospects and next-generation carbon technology that can be helpful in the field of neural sciences. The article aims at providing a common platform to neuroscientists, electrochemists, biologists, microsystems engineers and carbon scientists to enable active and comprehensive efforts directed towards carbon-based neuroelectronic device fabrication.
Collapse
Affiliation(s)
- Mamta Devi
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| | - Maria Vomero
- Bioelectronic Systems Laboratory, Columbia University, 500 West 120th Street, New York, NY 10027, United States of America
| | - Erwin Fuhrer
- School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075 India
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Calogero Gueli
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 080, 79110 Freiburg, Germany
| | - Surabhi Nimbalkar
- NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, San Diego State University and NSF-ERC Center for Neurotechnology (CNT), 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Mieko Hirabayashi
- NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, San Diego State University and NSF-ERC Center for Neurotechnology (CNT), 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Sam Kassegne
- NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, San Diego State University and NSF-ERC Center for Neurotechnology (CNT), 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 080, 79110 Freiburg, Germany.,BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 080, 79110 Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Hansastr. 9a, 79104 Freiburg, Germany
| | - Swati Sharma
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| |
Collapse
|