1
|
James I, Jain R, Wade G, Stevenson PC, Koulman A, Simcox J, Furse S. Systemic analysis shows that cold exposure modulates triglyceride accumulation and phospholipid distribution in mice. PLoS One 2024; 19:e0313205. [PMID: 39509438 PMCID: PMC11542792 DOI: 10.1371/journal.pone.0313205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Environmental exposure to cold is increasingly being associated with changes in metabolism. We developed and tested the hypothesis that exposure to cold drives systemic effects in lipid metabolism. Specifically, (i) that energy storage and provision adapts to the cold by altering triglyceride distribution and (ii) that membranes adapt to cold conditions by becoming more unsaturated. These hypotheses were designed to identify the underlying mechanisms that govern the response of mammalian systems to cold. To test these hypotheses, we used a metabolic network analysis. An established model of cold exposure was used, from which lipidomics data that represents the system was collected. The network analysis showed that triglyceride metabolism is altered on exposure to cold, with several smaller effects that are not straightforward, such as changes to the abundance and distribution of odd chain fatty acids. The range and profile of phosphatidylcholine and phosphatidylinositol were modified, but there was little change in phosphatidylethanolamine or sphingomyelin. These results support the hypothesis, and show that exposure to cold is a system-wide phenomenon that requires or drives changes across a range of metabolic pathways.
Collapse
Affiliation(s)
- Isabella James
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Raghav Jain
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gina Wade
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Philip C. Stevenson
- Biological Chemistry Group, Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom
- Natural Resources Institute, University of Greenwich, Chatham, Kent, United Kingdom
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Institute of Metabolic Science-Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Judith Simcox
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Samuel Furse
- Biological Chemistry Group, Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Institute of Metabolic Science-Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Furse S, Kusinski LC, Ray A, Glenn-Sansum C, Williams HEL, Koulman A, Meek CL. Relative Abundance of Lipid Metabolites in Spermatozoa across Three Compartments. Int J Mol Sci 2022; 23:ijms231911655. [PMID: 36232961 PMCID: PMC9569887 DOI: 10.3390/ijms231911655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
Male fertility, as manifest by the quantity and progressive motility of spermatozoa, is negatively impacted by obesity, dyslipidaemia and metabolic disease. However, the relative distribution of lipids in spermatozoa and the two compartments which supply lipids for spermatogenesis (seminal fluid and blood serum) has not been studied. We hypothesised that altered availability of lipids in blood serum and seminal fluid may affect the lipid composition and progressive motility of sperm. 60 men of age 35 years (median (range 20-45) and BMI 30.4 kg/m2 (24-36.5) under preliminary investigation for subfertility were recruited at an NHS clinic. Men provided samples of serum and semen, subject to strict acceptance criteria, for analysis of spermatozoa count and motility. Blood serum (n = 60), spermatozoa (n = 26) and seminal fluid (n = 60) were frozen for batch lipidomics analysis. Spermatozoa and seminal fluid had comparable lipid composition but showed marked differences with the serum lipidome. Spermatozoa demonstrated high abundance of ceramides, very-long-chain fatty acids (C20-22), and certain phospholipids (sphingomyelins, plasmalogens, phosphatidylethanolamines) with low abundance of phosphatidylcholines, cholesterol and triglycerides. Men with spermatozoa of low progressive motility had evidence of fewer concentration gradients for many lipid species between blood serum and spermatozoa compartments. Spermatozoa are abundant in multiple lipid species which are likely to contribute to key cellular functions. Lipid metabolism shows reduced regulation between compartments in men with spermatozoa with reduced progressive motility.
Collapse
Affiliation(s)
- Samuel Furse
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Laura C. Kusinski
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Alison Ray
- Department of Clinical Chemistry and Immunology, Peterborough City Hospital, North West Anglia NHS Foundation Trust, Bretton Gate, Peterborough PE3 9GZ, UK
| | - Coralie Glenn-Sansum
- R&D Department, Peterborough City Hospital, North West Anglia NHS Foundation Trust, Bretton Gate, Peterborough PE3 9GZ, UK
| | - Huw E. L. Williams
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Albert Koulman
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Claire L. Meek
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
- Department of Clinical Chemistry and Immunology, Peterborough City Hospital, North West Anglia NHS Foundation Trust, Bretton Gate, Peterborough PE3 9GZ, UK
- Department of Clinical Biochemistry, Cambridge Universities NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
- Correspondence: ; Tel.: +44-(0)1223-767176
| |
Collapse
|
3
|
Vítová M, Lanta V, Čížková M, Jakubec M, Rise F, Halskau Ø, Bišová K, Furse S. The biosynthesis of phospholipids is linked to the cell cycle in a model eukaryote. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158965. [PMID: 33992808 PMCID: PMC8202326 DOI: 10.1016/j.bbalip.2021.158965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
The structural challenges faced by eukaryotic cells through the cell cycle are key for understanding cell viability and proliferation. We tested the hypothesis that the biosynthesis of structural lipids is linked to the cell cycle. If true, this would suggest that the cell's structure is important for progress through and perhaps even control of the cell cycle. Lipidomics (31P NMR and MS), proteomics (Western immunoblotting) and transcriptomics (RT-qPCR) techniques were used to profile the lipid fraction and characterise aspects of its metabolism at seven stages of the cell cycle of the model eukaryote, Desmodesmus quadricauda. We found considerable, transient increases in the abundance of phosphatidylethanolamine during the G1 phase (+35%, ethanolamine phosphate cytidylyltransferase increased 2·5×) and phosphatidylglycerol (+100%, phosphatidylglycerol synthase increased 22×) over the G1/pre-replication phase boundary. The relative abundance of phosphatidylcholine fell by ~35% during the G1. N-Methyl transferases for the conversion of phosphatidylethanolamine into phosphatidylcholine were not found in the de novo transcriptome profile, though a choline phosphate transferase was found, suggesting that the Kennedy pathway is the principal route for the synthesis of PC. The fatty acid profiles of the four most abundant lipids suggested that these lipids were not generally converted between one another. This study shows for the first time that there are considerable changes in the biosynthesis of the three most abundant phospholipid classes in the normal cell cycle of D. quadricauda, by margins large enough to elicit changes to the physical properties of membranes.
Collapse
Affiliation(s)
- Milada Vítová
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Vojtěch Lanta
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic; Department of Functional Ecology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Martin Jakubec
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway
| | - Frode Rise
- Department of Chemistry, Universitetet i Oslo, P. O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Samuel Furse
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway; Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRL Institute of Metabolic Science, University of Cambridge, Level 4, Pathology Building, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Biological chemistry group, Jodrell laboratory, Royal Botanic Gardens Kew, United Kingdom.
| |
Collapse
|
4
|
Furse S, Fernandez-Twinn DS, Jenkins B, Meek CL, Williams HEL, Smith GCS, Charnock-Jones DS, Ozanne SE, Koulman A. A high-throughput platform for detailed lipidomic analysis of a range of mouse and human tissues. Anal Bioanal Chem 2020; 412:2851-2862. [PMID: 32144454 PMCID: PMC7196091 DOI: 10.1007/s00216-020-02511-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 02/02/2023]
Abstract
Lipidomics is of increasing interest in studies of biological systems. However, high-throughput data collection and processing remains non-trivial, making assessment of phenotypes difficult. We describe a platform for surveying the lipid fraction for a range of tissues. These techniques are demonstrated on a set of seven different tissues (serum, brain, heart, kidney, adipose, liver, and vastus lateralis muscle) from post-weaning mouse dams that were either obese (> 12 g fat mass) or lean (<5 g fat mass). This showed that the lipid metabolism in some tissues is affected more by obesity than others. Analysis of human serum (healthy non-pregnant women and pregnant women at 28 weeks' gestation) showed that the abundance of several phospholipids differed between groups. Human placenta from mothers with high and low BMI showed that lean placentae contain less polyunsaturated lipid. This platform offers a way to map lipid metabolism with immediate application in metabolic research and elsewhere. Graphical abstract.
Collapse
Affiliation(s)
- Samuel Furse
- grid.5335.00000000121885934Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ UK ,grid.5335.00000000121885934Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge,, Box 289, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - Denise S. Fernandez-Twinn
- grid.5335.00000000121885934Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ UK
| | - Benjamin Jenkins
- grid.5335.00000000121885934Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ UK ,grid.5335.00000000121885934Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge,, Box 289, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - Claire L. Meek
- grid.5335.00000000121885934Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ UK ,grid.24029.3d0000 0004 0383 8386Department of Clinical Biochemistry/Wolfson Diabetes & Endocrine Clinic, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK
| | - Huw E. L. Williams
- grid.4563.40000 0004 1936 8868Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Gordon C. S. Smith
- grid.5335.00000000121885934Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, CB2 0SW UK ,grid.5335.00000000121885934Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG UK
| | - D. Stephen Charnock-Jones
- grid.5335.00000000121885934Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, CB2 0SW UK ,grid.5335.00000000121885934Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG UK
| | - Susan E. Ozanne
- grid.5335.00000000121885934Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ UK
| | - Albert Koulman
- grid.5335.00000000121885934Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ UK ,grid.5335.00000000121885934Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge,, Box 289, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| |
Collapse
|
5
|
Lipid Biosynthesis as an Antifungal Target. J Fungi (Basel) 2018; 4:jof4020050. [PMID: 29677130 PMCID: PMC6023442 DOI: 10.3390/jof4020050] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022] Open
Abstract
Lipids, commonly including phospholipids, sphingolipids, fatty acids, sterols, and triacylglycerols (TAGs), are important biomolecules for the viability of all cells. Phospholipids, sphingolipids, and sterols are important constituents of biological membranes. Many lipids play important roles in the regulation of cell metabolism by acting as signaling molecules. Neutral lipids, including TAGs and sterol esters (STEs), are important storage lipids in cells. In view of the importance of lipid molecules, this review briefly summarizes the metabolic pathways for sterols, phospholipids, sphingolipids, fatty acids, and neutral lipids in fungi and illustrates the differences between fungal and human (or other mammalian) cells, especially in relation to lipid biosynthetic pathways. These differences might provide valuable clues for us to find target proteins for novel antifungal drugs. In addition, the development of lipidomics technology in recent years has supplied us with a shortcut for finding new antifungal drug targets; this ability is important for guiding our research on pathogenic fungi.
Collapse
|
6
|
Furse S, Shearman GC. Do lipids shape the eukaryotic cell cycle? Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:9-19. [PMID: 28964796 DOI: 10.1016/j.bbalip.2017.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/07/2017] [Accepted: 09/24/2017] [Indexed: 10/18/2022]
Abstract
Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised.
Collapse
Affiliation(s)
- Samuel Furse
- NucReg Research Programme, Molekylærbiologisk institutt, Unversitetet i Bergen, Thormøhlens gate 55, 5008, Bergen, Norway; Core Metabolomics and Lipidomics Laboratory, Department of Biochemistry, University of Cambridge, c/o Level 4, Pathology Building, Addenbrookes Hospital, Cambridge, CB2 0QQ, United Kingdom..
| | - Gemma C Shearman
- Faculty of Science, Engineering and Computing, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, United Kingdom
| |
Collapse
|
7
|
Furse S, Brooks NJ, Woscholski R, Gaffney PR, Templer RH. Pressure-dependent inverse bicontinuous cubic phase formation in a phosphatidylinositol 4-phosphate/phosphatidylcholine system. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cdc.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Furse S, Mak L, Tate EW, Templer RH, Ces O, Woscholski R, Gaffney PRJ. Synthesis of unsaturated phosphatidylinositol 4-phosphates and the effects of substrate unsaturation on SopB phosphatase activity. Org Biomol Chem 2015; 13:2001-11. [PMID: 25515724 DOI: 10.1039/c4ob02258k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper evidence is presented that the fatty acid component of an inositide substrate affects the kinetic parameters of the lipid phosphatase Salmonella Outer Protein B (SopB). A succinct route was used to prepare the naturally occurring enantiomer of phosphatidylinositol 4-phosphate (PI-4-P) with saturated, as well as singly, triply and quadruply unsaturated, fatty acid esters, in four stages: (1) The enantiomers of 2,3:5,6-O-dicyclohexylidene-myo-inositol were resolved by crystallisation of their di(acetylmandelate) diastereoisomers. (2) The resulting diol was phosphorylated regio-selectively exclusively on the 1-O using the new reagent tri(2-cyanoethyl)phosphite. (3) With the 4-OH still unprotected, the glyceride was coupled using phosphate tri-ester methodology. (4) A final phosphorylation of the 4-O, followed by global deprotection under basic then acidic conditions, provided PI-4-P bearing a range of sn-1-stearoyl, sn-2-stearoyl, -oleoyl, -γ-linolenoyl and arachidonoyl, glycerides. Enzymological studies showed that the introduction of cis-unsaturated bonds has a measurable influence on the activity (relative Vmax) of SopB. Mono-unsaturated PI-4-P exhibited a five-fold higher activity, with a two-fold higher KM, over the saturated substrate, when presented in DOPC vesicles. Poly-unsaturated PI-4-P showed little further change with respect to the singly unsaturated species. This result, coupled with our previous report that saturated PI-4-P has much higher stored curvature elastic stress than PI, supports the hypothesis that the activity of inositide phosphatase SopB has a physical role in vivo.
Collapse
Affiliation(s)
- Samuel Furse
- Institute of Chemical Biology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Since its discovery in the 19th century, phosphatidylcholine (PC) has been regarded primarily as a structural lipid. However, more recent evidence, much of it in the last five years, strongly suggests that PC has other roles. Here, we explore some of that new evidence and consider the possibility that the ultimate role of phosphatidylcholine may not be predictable.
Collapse
Affiliation(s)
- Samuel Furse
- a Membrane Biochemistry and Biophysics, University of Utrecht , Utrecht , The Netherlands
| | - Anton I P M de Kroon
- a Membrane Biochemistry and Biophysics, University of Utrecht , Utrecht , The Netherlands
| |
Collapse
|