1
|
Lone S, Narayan S, Hussain K, Malik M, Yadav SK, Khan FA, Safa A, Ahmad A, Masoodi KZ. Investigating the antioxidant and anticancer potential of Daucus spp. extracts against human prostate cancer cell line C4-2, and lung cancer cell line A549. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118855. [PMID: 39332616 DOI: 10.1016/j.jep.2024.118855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
The study evaluated 297 carrot germplasm lines, focusing on 52 cultivars to explore their therapeutic potential and address challenges related to the accessibility and affordability of nutraceuticals and health promoting foods. The investigation explores the application of DNA barcoding using the ITS region for precise species identification, highlighting genetic diversity among the examined cultivars. Through ITS sequence-based analysis and phylogenetic examination, six diverse Daucus spp. genotypes were differentiated and classified into distinct groups, indicating the presence of vast genetic variation. Evaluation of antioxidant activities using the DPPH radical scavenging assay revealed varying degrees of scavenging ability among genotypes with SKAU-C-15, SKAU-C-17, and SKAU-C-16 exhibiting the highest activity, suggesting their potential for antioxidant-rich products. Thin Layer Chromatography (TLC) bioautography confirmed the presence of bioactive compounds in carrot extracts responsible for their antioxidant properties. In cell culture studies, specific carrot genotype extracts demonstrated potential anti-proliferative and anti-invasive effects on recurrent prostate cancer cell line - C4-2 (SKAU-C-30, SKAU-C-10, and SKAU-C-42) and non-small cell lung cancer cell line - A549 (SKAU-C-18 and SKAU-C-11) cancer cells, as indicated by MTT assay, wound healing assay, and Colony Forming Unit assay. These findings suggest the promising therapeutic potential of carrot genotypes for developing anti-cancer functional foods, nutraceuticals and health supplements.Therefore, the study contributes to the nutrition security, paving the way for advancements in functional foods and health applications, particularly in cancer treatment and prevention.
Collapse
Affiliation(s)
- Sameena Lone
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, J&K, India; Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, J&K, India
| | - Sumati Narayan
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, J&K, India
| | - Khursheed Hussain
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, J&K, India
| | - Muzaffar Malik
- Division of Soil Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, J&K, India
| | - Satish Kumar Yadav
- National Bureau of Plant Genetic Resources (NBPGR), Pusa, 110012, New Delhi, India
| | - Farooq Ahmad Khan
- Division of Basic Sciences and Humanities, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, J&K, India
| | - Aliya Safa
- Unani Medical College Institute of Asian Medical Sciences, Srinagar, J&K, India
| | - Ajaz Ahmad
- Departments of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid Z Masoodi
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, J&K, India.
| |
Collapse
|
2
|
Metwally RA, El-Sersy NA, El Sikaily A, Sabry SA, Ghozlan HA. Optimization and multiple in vitro activity potentials of carotenoids from marine Kocuria sp. RAM1. Sci Rep 2022; 12:18203. [PMID: 36307503 PMCID: PMC9616409 DOI: 10.1038/s41598-022-22897-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/20/2022] [Indexed: 12/31/2022] Open
Abstract
Marine pigmented bacteria are a promising natural source of carotenoids. Kocuria sp. RAM1 was isolated from the Red Sea Bohadschia graeffei collected from Marsa Alam, Egypt, and used for carotenoids production. The extracted carotenoids were purified by thin-layer chromatography (TLC). The characteristic UV absorbance of the three purified fractions gave us an inkling of what the purified pigments were. The chemical structures were confirmed by nuclear magnetic resonance spectroscopy (NMR) and LC-ESI-QTOF-MS/MS. The three different red pigments were identified as two C50-carotenoids, namely bisanhydrobacterioruberin and trisanhydrobacterioruberin, in addition to 3,4,3',4'-Tetrahydrospirilloxanthin (C42-carotenoids). Kocuria sp. RAM1 carotenoids were investigated for multiple activities, including antimicrobial, anti-inflammatory, antioxidant, anti-HSV-1, anticancer, antidiabetic and wound healing. These new observations suggest that Kocuria sp. RAM1 carotenoids can be used as a distinctive natural pigment with potent properties.
Collapse
Affiliation(s)
- Rasha A. Metwally
- grid.419615.e0000 0004 0404 7762Marine Microbiology Lab., National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt
| | - Nermeen A. El-Sersy
- grid.419615.e0000 0004 0404 7762Marine Microbiology Lab., National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt
| | - Amany El Sikaily
- grid.419615.e0000 0004 0404 7762Marine Pollution Lab., National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt
| | - Soraya A. Sabry
- grid.7155.60000 0001 2260 6941Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hanan A. Ghozlan
- grid.7155.60000 0001 2260 6941Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Disease Prevention and Treatment Using β-Carotene: the Ultimate Provitamin A. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2022; 32:491-501. [PMID: 35669276 PMCID: PMC9150880 DOI: 10.1007/s43450-022-00262-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
Abstract
Humans being unable to synthesize beta-carotene, the provitamin A, depend on external sources as its supplement. Health benefits and dietary requirements of beta-carotene are interrelated. This orange-red coloured pigment has been enormously examined for its capacity to alleviate several chronic diseases including various types of cancer, cystic fibrosis, as well as COVID-19. However, this class of phytoconstituents has witnessed a broad research gap due to several twin conclusions that have been reported. Natural sources for these compounds along with their extraction methods have been mentioned. The current communication aims at contributing to the global scientific literature on beta-carotene’s application in prevention and treatment of lifestyle diseases.
Collapse
|
4
|
Alqarni MH, Alam P, Alam A, Ali A, Foudah AI, Alshehri S, Ghoneim MM, Shakeel F. A Greener HPTLC Approach for the Determination of β-Carotene in Traditional and Ultrasound-Based Extracts of Different Fractions of Daucus carota (L.), Ipomea batatas (L.), and Commercial Formulation. AGRONOMY 2021; 11:2443. [DOI: 10.3390/agronomy11122443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Various analytical approaches for determining β-carotene in vegetable crops and commercial dosage forms have been documented. However, neither the qualitative nor quantitative environmental safety and greener aspects of the literature analytical methodologies of β-carotene analysis have been assessed. As a result, the goal of this research is to develop and validate a reversed-phase “high-performance thin-layer chromatography (HPTLC)” approach for determining β-carotene in traditional (TE) and ultrasound-assisted (UBE) extracts of different fractions of Daucus carota (L.), Ipomea batatas (L.), and commercial formulation. The greener mobile phase for β-carotene analysis was a ternary mixture of ethanol, cyclohexane, and ammonia (95:2.5:2.5, v v v−1). The detection of β-carotene was done at a wavelength of 459 nm. In the 25–1000 ng band−1 range, the greener reversed-phase HPTLC approach was linear. Other validation factors for β-carotene analysis, including as accuracy, precision, robustness, and sensitivity, were likewise dependable. The contents of β-carotene were found to be maximum in hexane: acetone (50:50%) fractions of TE and UBE of D. carota and I. batatas compared to their acetone and hexane fractions. The amount of β-carotene in hexane: acetone (50:50%) portions of TE of D. carota, I. batatas and commercial formulation A was estimated to be 10.32, 3.73, and 6.73 percent w w−1, respectively. However, the amount of β-carotene in hexane: acetone (50:50%) portions of UBE of D. carota, I. batatas and commercial formulation A was estimated to be 11.03, 4.43, and 6.89 percent w w−1, respectively. The greenness scale for the proposed HPTLC strategy was calculated as 0.81 using the “analytical GREEnness (AGREE)” method, indicating that the proposed HPTLC methodology has good greenness. The UBE approach for extracting β-carotene outperformed the TE procedure. These results indicated that the greener reversed-phase HPTLC approach can be utilized for the determination of β-carotene in different vegetable crops, plant-based phytopharmaceuticals, and commercial products. In addition, this approach is also safe and sustainable due to the utilization of a greener mobile phase compared to the toxic mobile phases utilized in literature analytical approaches of β-carotene estimation.
Collapse
Affiliation(s)
- Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Safdarian M, Hashemi P, Ghiasvand A. A fast and simple method for determination of β-carotene in commercial fruit juice by cloud point extraction-cold column trapping combined with UV-Vis spectrophotometry. Food Chem 2020; 343:128481. [PMID: 33183871 DOI: 10.1016/j.foodchem.2020.128481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022]
Abstract
Cloud point extraction with cold column trapping (CPE-CCT) was used for the rapid preconcentration and UV-Vis spectroscopy of beta-carotene in fruit juice samples. A central composite design was employed to optimize parameters such as pH, incubation time, cloud point temperature and surfactant concentration. A detection limit of 0.01 mg/L of beta-carotene (3SB/m), a coefficient of determination of 0.998 and a linear range of 0.04-10 mg/L were obtained. The CPE-CCT method was confirmed in comparison with the corresponding direct HPLC standard method. A simple, portable and cost-effective device was also utilized. Owing to eliminating centrifugation, the conditions of CPE-CCT were more moderate and its sample handling easier compared to conventional CPE.
Collapse
Affiliation(s)
- Mehdi Safdarian
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran; Nanotechnology Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Payman Hashemi
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran.
| | - Alireza Ghiasvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
6
|
Sherma J, Rabel F. A review of thin layer chromatography methods for determination of authenticity of foods and dietary supplements. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1505637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Joseph Sherma
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | | |
Collapse
|
7
|
Hosu A, Cimpoiu C. Thin-layer chromatography applied in quality assessment of beverages derived from fruits. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1298025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anamaria Hosu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Claudia Cimpoiu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Zheng J, Zhou Y, Li S, Zhang P, Zhou T, Xu DP, Li HB. Effects and Mechanisms of Fruit and Vegetable Juices on Cardiovascular Diseases. Int J Mol Sci 2017; 18:E555. [PMID: 28273863 PMCID: PMC5372571 DOI: 10.3390/ijms18030555] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
Abstract
Many studies have indicated that consumption of vegetables and fruits are positively related to lower incidence of several chronic noncommunicable diseases. Although composition of fruit and vegetable juices is different from that of the edible portion of fruits and vegetables, they contain polyphenols and vitamins from fruits and vegetables. Drinking vegetable and fruit juices is very popular in many countries, and also an efficient way to improve consumption of fruits and vegetables. The studies showed that fruit and vegetable juices affect cardiovascular risk factors, such as lowering blood pressure and improving blood lipid profiles. The main mechanisms of action included antioxidant effects, improvement of the aspects of the cardiovascular system, inhibition of platelet aggregation, anti-inflammatory effects, and prevention of hyperhomocysteinemia. Drinking juices might be a potential way to improve cardiovascular health, especially mixtures of juices because they contain a variety of polyphenols, vitamins, and minerals from different fruits and vegetables. This review summarizes recent studies on the effects of fruit and vegetable juices on indicators of cardiovascular disease, and special attention is paid to the mechanisms of action.
Collapse
Affiliation(s)
- Jie Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Pei Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|