1
|
Ge H, Guo C, Jiang Y, Zhang Y, Zhou W, Wang H. Research on Non-Destructive Quality Detection of Sunflower Seeds Based on Terahertz Imaging Technology. Foods 2024; 13:2830. [PMID: 39272595 PMCID: PMC11394799 DOI: 10.3390/foods13172830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The variety and content of high-quality proteins in sunflower seeds are higher than those in other cereals. However, sunflower seeds can suffer from abnormalities, such as breakage and deformity, during planting and harvesting, which hinder the development of the sunflower seed industry. Traditional methods such as manual sensory and machine sorting are highly subjective and cannot detect the internal characteristics of sunflower seeds. The development of spectral imaging technology has facilitated the application of terahertz waves in the quality inspection of sunflower seeds, owing to its advantages of non-destructive penetration and fast imaging. This paper proposes a novel terahertz image classification model, MobileViT-E, which is trained and validated on a self-constructed dataset of sunflower seeds. The results show that the overall recognition accuracy of the proposed model can reach 96.30%, which is 4.85%, 3%, 7.84% and 1.86% higher than those of the ResNet-50, EfficientNeT, MobileOne and MobileViT models, respectively. At the same time, the performance indices such as the recognition accuracy, the recall and the F1-score values are also effectively improved. Therefore, the MobileViT-E model proposed in this study can improve the classification and identification of normal, damaged and deformed sunflower seeds, and provide technical support for the non-destructive detection of sunflower seed quality.
Collapse
Affiliation(s)
- Hongyi Ge
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chunyan Guo
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuying Jiang
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China
| | - Yuan Zhang
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wenhui Zhou
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Heng Wang
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
2
|
Ollinger N, Blank-Landeshammer B, Schütz-Kapl L, Rochard A, Pfeifenberger I, Carstensen JM, Müller M, Weghuber J. High-Oleic Sunflower Oil as a Potential Substitute for Palm Oil in Sugar Coatings-A Comparative Quality Determination Using Multispectral Imaging and an Electronic Nose. Foods 2024; 13:1693. [PMID: 38890921 PMCID: PMC11172279 DOI: 10.3390/foods13111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Palm oil has a bad reputation due to the exploitation of farmers and the destruction of endangered animal habitats. Therefore, many consumers wish to avoid the use of palm oil. Decorative sugar contains a small amount of palm oil to prevent the sugar from melting on hot bakery products. High-oleic sunflower oil used as a substitute for palm oil was analyzed in this study via multispectral imaging and an electronic nose, two methods suitable for potential large-batch analysis of sugar/oil coatings. Multispectral imaging is a nondestructive method for comparing the wavelength reflections of the surface of a sample. Reference samples enabled the estimation of the quality of unknown samples, which were confirmed via acid value measurements. Additionally, for quality determination, volatile compounds from decorative sugars were measured with an electronic nose. Both applications provide comparable data that provide information about the quality of decorative sugars.
Collapse
Affiliation(s)
- Nicole Ollinger
- FFoQSI–Austrian Competence Centre for Feed and Food Quality Safety & Innovation FFoQSI GmbH, Technopark 1D, 3430 Tulln, Austria; (B.B.-L.)
| | - Bernhard Blank-Landeshammer
- FFoQSI–Austrian Competence Centre for Feed and Food Quality Safety & Innovation FFoQSI GmbH, Technopark 1D, 3430 Tulln, Austria; (B.B.-L.)
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600 Wels, Austria
| | - Lisa Schütz-Kapl
- FFoQSI–Austrian Competence Centre for Feed and Food Quality Safety & Innovation FFoQSI GmbH, Technopark 1D, 3430 Tulln, Austria; (B.B.-L.)
| | - Angeline Rochard
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600 Wels, Austria
| | - Iris Pfeifenberger
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600 Wels, Austria
| | | | - Manfred Müller
- Puratos Austria GmbH, Maria-Theresia-Straße 41, 4600 Wels, Austria;
| | - Julian Weghuber
- FFoQSI–Austrian Competence Centre for Feed and Food Quality Safety & Innovation FFoQSI GmbH, Technopark 1D, 3430 Tulln, Austria; (B.B.-L.)
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600 Wels, Austria
| |
Collapse
|
3
|
Tao H, Xu S, Tian Y, Li Z, Ge Y, Zhang J, Wang Y, Zhou G, Deng X, Zhang Z, Ding Y, Jiang D, Guo Q, Jin S. Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. PLANT COMMUNICATIONS 2022; 3:100344. [PMID: 35655429 PMCID: PMC9700174 DOI: 10.1016/j.xplc.2022.100344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/08/2022] [Accepted: 05/27/2022] [Indexed: 06/01/2023]
Abstract
Plant phenomics (PP) has been recognized as a bottleneck in studying the interactions of genomics and environment on plants, limiting the progress of smart breeding and precise cultivation. High-throughput plant phenotyping is challenging owing to the spatio-temporal dynamics of traits. Proximal and remote sensing (PRS) techniques are increasingly used for plant phenotyping because of their advantages in multi-dimensional data acquisition and analysis. Substantial progress of PRS applications in PP has been observed over the last two decades and is analyzed here from an interdisciplinary perspective based on 2972 publications. This progress covers most aspects of PRS application in PP, including patterns of global spatial distribution and temporal dynamics, specific PRS technologies, phenotypic research fields, working environments, species, and traits. Subsequently, we demonstrate how to link PRS to multi-omics studies, including how to achieve multi-dimensional PRS data acquisition and processing, how to systematically integrate all kinds of phenotypic information and derive phenotypic knowledge with biological significance, and how to link PP to multi-omics association analysis. Finally, we identify three future perspectives for PRS-based PP: (1) strengthening the spatial and temporal consistency of PRS data, (2) exploring novel phenotypic traits, and (3) facilitating multi-omics communication.
Collapse
Affiliation(s)
- Haiyu Tao
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Shan Xu
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Yongchao Tian
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Zhaofeng Li
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Agriculture College, Shihezi University, Shihezi 832003, China
| | - Yan Ge
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Jiaoping Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Wang
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Guodong Zhou
- Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China
| | - Xiong Deng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ze Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Agriculture College, Shihezi University, Shihezi 832003, China
| | - Yanfeng Ding
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China
| | - Dong Jiang
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China
| | - Qinghua Guo
- Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Shichao Jin
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
4
|
Panda BK, Mishra G, Ramirez WA, Jung H, Singh CB, Lee SH, Lee I. Rancidity and moisture estimation in shelled almond kernels using NIR hyperspectral imaging and chemometric analysis. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Liu W, He L, Xia Y, Ren L, Liu C, Zheng L. Monitoring the growth of Fusarium graminearum in wheat kernels using multispectral imaging with chemometric methods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:106-113. [PMID: 34877944 DOI: 10.1039/d1ay01586a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wheat is an important agricultural economic crop providing energy and nutrition for human beings. However, wheat kernels are easily contaminated with Fusarium graminearum that is harmful to human health. In this study, a rapid and nondestructive detection method has been developed to identify the degree of contamination and determine the count of Fusarium graminearum in wheat kernels using multispectral imaging technology. Based on genetic algorithm (GA) and principal component analysis (PCA) data preprocessing methods combined with partial least squares (PLS), support vector machine (SVM) and back propagation neural network (BPNN) chemometric methods, identification and quantitative determination models were established. The best result was obtained by GA-BPNN with an accuracy of up to 100% in the identification of the degree of contamination in wheat kernels at different contamination periods. Comparison of the results from different methods revealed that the best prediction of the count of Fusarium graminearum was obtained by GA-SVM with the correlation coefficient (R) in the calibration set and prediction set being 0.9663 and 0.9292, while the root mean square error (RMSE) in the calibration set and prediction set was 0.5992 and 0.6725 CFU g-1, respectively. It can be concluded that the combination of multispectral imaging and chemometric methods was potentially useful for rapid and nondestructive detection of cereal fungi in practice.
Collapse
Affiliation(s)
- Wei Liu
- Intelligent Control and Compute Vision Lab, Hefei University, Hefei 230601, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Lin He
- Intelligent Control and Compute Vision Lab, Hefei University, Hefei 230601, China
| | - Yiming Xia
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Lin Ren
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Changhong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
6
|
Younas S, Mao Y, Liu C, Liu W, Jin T, Zheng L. Efficacy study on the non-destructive determination of water fractions in infrared-dried Lentinus edodes using multispectral imaging. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
|
8
|
Shi Y, Liu W, Zhao P, Liu C, Zheng L. Rapid and nondestructive determination of deoxynivalenol (DON) content in wheat using multispectral imaging (MSI) technology with chemometric methods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3390-3396. [PMID: 32930227 DOI: 10.1039/d0ay00859a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wheat is susceptible to contamination by deoxynivalenol (DON) which is regarded as a class III carcinogen. In this paper, a rapid and nondestructive method for DON content determination and contamination degree discrimination in wheat was developed by using a multispectral imaging (405-970 nm) system. Genetic algorithm (GA) and principal component analysis (PCA), as preprocessing methods, were used to obtain the best spectral characteristics. The determination model was established by combining preprocessing methods and chemometric methods including partial least squares (PLS), support vector machines (SVM) and back propagation neural network (BPNN). The best quantitative determination result was obtained based on GA-SVM with a correlation coefficient of prediction (Rp), root mean square error of prediction (RMSEP) and residual predictive deviation (RPD) of 0.9988, 365.3 μg kg-1 and 8.6, respectively. Furthermore, the accuracy of contamination degree classification was up to 94.29% in the prediction set by using the PCA-PLS model. The results showed that the combination of multispectral imaging technology and chemometrics was an effective and nondestructive method for the determination of DON in wheat.
Collapse
Affiliation(s)
- Yule Shi
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Wei Liu
- Intelligent Control and Compute Vision Lab, Hefei University, Hefei 230601, China
| | - Pengguang Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Changhong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
- Research Laboratory of Agricultural Environment and Food Safety, Anhui Modern Agricultural Industry Technology System, Hefei, 230009, China
| |
Collapse
|
9
|
Younas S, Liu C, Qu H, Mao Y, Liu W, Wei L, Yan L, Zheng L. Multispectral imaging for predicting the water status in mushroom during hot-air dehydration. J Food Sci 2020; 85:903-909. [PMID: 32147837 DOI: 10.1111/1750-3841.15081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/23/2019] [Accepted: 01/24/2020] [Indexed: 12/28/2022]
Abstract
In-depth understanding of the shifting of water status during dehydration is crucial for obtaining better quality of dried food. In this work, we report a nondestructive method to measure the water status in hot-air dried mushroom via multispectral imaging (MSI) technology combined with chemometric methods. The low-field nuclear magnetic resonance (LF-NMR) measurements were performed as reference. During drying process, the moisture content changed dramatically with notable migration and conversion of different water phases. Partial least squares (PLS), back propagation neural network (BPNN), and least squares-support vector machine (LS-SVM) models were applied to develop quantitative models. Among all, BPNN model showed considerably better performance of prediction with coefficient of determination R2 c = 0.9829, R2 p = 0.9639. The results demonstrated that MSI technology combined with chemometric methods is an impressive approach for determination of the water status in hot-air dried mushrooms, which would facilitate infield of food processing by providing applicable and appropriate platform. PRACTICAL APPLICATION: Experimental investigation of different water status during food processing. Assessment of the potential of multispectral imaging to predict water status. Usage of novel measurement method for food processors.
Collapse
Affiliation(s)
- Shoaib Younas
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Changhong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Liu
- Intelligent Control and Compute Vision Lab, Hefei University, Hefei, 230601, China
| | - Liyang Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ling Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.,Research Laboratory of Agricultural Environment and Food Safety, Anhui Modern Agricultural Industry Technology System, Hefei, 230009, China
| |
Collapse
|
10
|
ElMasry G, Mandour N, Al-Rejaie S, Belin E, Rousseau D. Recent Applications of Multispectral Imaging in Seed Phenotyping and Quality Monitoring-An Overview. SENSORS 2019; 19:s19051090. [PMID: 30836613 PMCID: PMC6427362 DOI: 10.3390/s19051090] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 12/02/2022]
Abstract
As a synergistic integration between spectroscopy and imaging technologies, spectral imaging modalities have been emerged to tackle quality evaluation dilemmas by proposing different designs with effective and practical applications in food and agriculture. With the advantage of acquiring spatio-spectral data across a wide range of the electromagnetic spectrum, the state-of-the-art multispectral imaging in tandem with different multivariate chemometric analysis scenarios has been successfully implemented not only for food quality and safety control purposes, but also in dealing with critical research challenges in seed science and technology. This paper will shed some light on the fundamental configuration of the systems and give a birds-eye view of all recent approaches in the acquisition, processing and reproduction of multispectral images for various applications in seed quality assessment and seed phenotyping issues. This review article continues from where earlier review papers stopped but it only focused on fully-operated multispectral imaging systems for quality assessment of different sorts of seeds. Thence, the review comprehensively highlights research attempts devoted to real implementations of only fully-operated multispectral imaging systems and does not consider those ones that just utilized some key wavelengths extracted from hyperspectral data analyses without building independent multispectral imaging systems. This makes this article the first attempt in briefing all published papers in multispectral imaging applications in seed phenotyping and quality monitoring by providing some examples and research results in characterizing physicochemical quality traits, predicting physiological parameters, detection of defect, pest infestation and seed health.
Collapse
Affiliation(s)
- Gamal ElMasry
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia.
- Faculty of Agriculture, Suez Canal University, Ring Road Km 4.5, Ismailia P.O. Box 41522, Egypt.
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 42 rue Georges Morel CS 60057, F-49071 Beaucouzé CEDEX, Angers, France.
| | - Nasser Mandour
- Faculty of Agriculture, Suez Canal University, Ring Road Km 4.5, Ismailia P.O. Box 41522, Egypt.
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia.
| | - Etienne Belin
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 42 rue Georges Morel CS 60057, F-49071 Beaucouzé CEDEX, Angers, France.
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers, 62 avenue Notre Dame du Lac, 49000 Angers, France.
| | - David Rousseau
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 42 rue Georges Morel CS 60057, F-49071 Beaucouzé CEDEX, Angers, France.
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers, 62 avenue Notre Dame du Lac, 49000 Angers, France.
| |
Collapse
|
11
|
ElMasry G, Mandour N, Wagner MH, Demilly D, Verdier J, Belin E, Rousseau D. Utilization of computer vision and multispectral imaging techniques for classification of cowpea ( Vigna unguiculata) seeds. PLANT METHODS 2019; 15:24. [PMID: 30911323 PMCID: PMC6417027 DOI: 10.1186/s13007-019-0411-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/08/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND The traditional methods for evaluating seeds are usually performed through destructive sampling followed by physical, physiological, biochemical and molecular determinations. Whilst proven to be effective, these approaches can be criticized as being destructive, time consuming, labor intensive and requiring experienced seed analysts. Thus, the objective of this study was to investigate the potential of computer vision and multispectral imaging systems supported with multivariate analysis for high-throughput classification of cowpea (Vigna unguiculata) seeds. An automated computer-vision germination system was utilized for uninterrupted monitoring of seeds during imbibition and germination to identify different categories of all individual seeds. By using spectral signatures of single cowpea seeds extracted from multispectral images, different multivariate analysis models based on linear discriminant analysis (LDA) were developed for classifying the seeds into different categories according to ageing, viability, seedling condition and speed of germination. RESULTS The results revealed that the LDA models had good accuracy in distinguishing 'Aged' and 'Non-aged' seeds with an overall correct classification (OCC) of 97.51, 96.76 and 97%, 'Germinated' and 'Non-germinated' seeds with OCC of 81.80, 79.05 and 81.0%, 'Early germinated', 'Medium germinated' and 'Dead' seeds with OCC of 77.21, 74.93 and 68.00% and among seeds that give 'Normal' and 'Abnormal' seedlings with OCC of 68.08, 64.34 and 62.00% in training, cross-validation and independent validation data sets, respectively. Image processing routines were also developed to exploit the full power of the multispectral imaging system in visualizing the difference among seed categories by applying the discriminant model in a pixel-wise manner. CONCLUSION The results demonstrated the capability of the multispectral imaging system in the ultraviolet, visible and shortwave near infrared range to provide the required information necessary for the discrimination of individual cowpea seeds to different classes. Considering the short time of image acquisition and limited sample preparation, this stat-of-the art multispectral imaging method and chemometric analysis in classifying seeds could be a valuable tool for on-line classification protocols in cost-effective real-time sorting and grading processes as it provides not only morphological and physical features but also chemical information for the seeds being examined. Implementing image processing algorithms specific for seed quality assessment along with the declining cost and increasing power of computer hardware is very efficient to make the development of such computer-integrated systems more attractive in automatic inspection of seed quality.
Collapse
Affiliation(s)
- Gamal ElMasry
- Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, P.O Box 41522, Ismailia, Egypt
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071 Beaucouzé, Angers, France
| | - Nasser Mandour
- Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, P.O Box 41522, Ismailia, Egypt
| | - Marie-Hélène Wagner
- GEVES, Station Nationale d’Essais de Semences (SNES), 49071 Beaucouzé, Angers, France
| | - Didier Demilly
- GEVES, Station Nationale d’Essais de Semences (SNES), 49071 Beaucouzé, Angers, France
| | - Jerome Verdier
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071 Beaucouzé, Angers, France
| | - Etienne Belin
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d’Angers, Angers, France
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071 Beaucouzé, Angers, France
| | - David Rousseau
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d’Angers, Angers, France
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071 Beaucouzé, Angers, France
| |
Collapse
|
12
|
Su WH, Sun DW. Multispectral Imaging for Plant Food Quality Analysis and Visualization. Compr Rev Food Sci Food Saf 2018; 17:220-239. [DOI: 10.1111/1541-4337.12317] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Wen-Hao Su
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, Univ. College Dublin (UCD); National Univ. of Ireland; Belfield Dublin 4 Ireland
| | - Da-Wen Sun
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, Univ. College Dublin (UCD); National Univ. of Ireland; Belfield Dublin 4 Ireland
| |
Collapse
|